Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Water Budget, Biological Water Use, and the Soil Hydrological Cycle across Typical Ecosystems of the Heihe River Basin
Quantification of the water budget of an arid inland river ecosystem is essential but still a challenge for the sustainable development of water resources. In situ observed data were used to analyze the monthly and annual water budgets and the soil hydrological cycle for six typical ecosystems in the Heihe River Basin (HRB). The two-source model was used to partition evapotranspiration (ET) into transpiration (T) and evaporation, after which the validated model was applied to quantitatively analyze the biological water use fraction [T/Ecosystem Water Supply (WS)] for different ecosystems. There were differences in the water budgets of the different ecosystems due to differences in climate, vegetation, soil, and external inputs. Precipitation in the HRB decreased from upstream to downstream, whereas there was a gradual increase in ET. External sources of water (e.g., natural runoff from upstream, irrigation in the middle reaches, and groundwater recharge in the lower reaches) to soil layers played an important role in regulating the water budgets of HRB ecosystems. Cropland obtained the maximum biological water use fraction (0.50), followed by Populus euphratica (0.49), alpine meadow (0.49), alpine swamp meadow (0.44), Tamarix ramosissima (0.42), and Kalidium foliatum (0.4). The soil water residence time (at a depth of 40 cm) varied from 14 d to 97 d (average of 60 d). The order of plant species in terms of soil water residence time was: K. foliatum (88 d) > T. ramosissima (72 d) > alpine meadow (68 d) > alpine swamp meadow (63 d) > cropland (53 d) > P. euphratica forest (20 d). Differences in the biological water use fraction and soil water residence time could be attributed to the characteristics of the water budget for each ecosystem. This study quantified the water budget, biological water use, and soil hydrological cycle across typical ecosystems in HRB, and can act as a reference for ecosystem management of the arid inland river basin.
Water Budget, Biological Water Use, and the Soil Hydrological Cycle across Typical Ecosystems of the Heihe River Basin
Quantification of the water budget of an arid inland river ecosystem is essential but still a challenge for the sustainable development of water resources. In situ observed data were used to analyze the monthly and annual water budgets and the soil hydrological cycle for six typical ecosystems in the Heihe River Basin (HRB). The two-source model was used to partition evapotranspiration (ET) into transpiration (T) and evaporation, after which the validated model was applied to quantitatively analyze the biological water use fraction [T/Ecosystem Water Supply (WS)] for different ecosystems. There were differences in the water budgets of the different ecosystems due to differences in climate, vegetation, soil, and external inputs. Precipitation in the HRB decreased from upstream to downstream, whereas there was a gradual increase in ET. External sources of water (e.g., natural runoff from upstream, irrigation in the middle reaches, and groundwater recharge in the lower reaches) to soil layers played an important role in regulating the water budgets of HRB ecosystems. Cropland obtained the maximum biological water use fraction (0.50), followed by Populus euphratica (0.49), alpine meadow (0.49), alpine swamp meadow (0.44), Tamarix ramosissima (0.42), and Kalidium foliatum (0.4). The soil water residence time (at a depth of 40 cm) varied from 14 d to 97 d (average of 60 d). The order of plant species in terms of soil water residence time was: K. foliatum (88 d) > T. ramosissima (72 d) > alpine meadow (68 d) > alpine swamp meadow (63 d) > cropland (53 d) > P. euphratica forest (20 d). Differences in the biological water use fraction and soil water residence time could be attributed to the characteristics of the water budget for each ecosystem. This study quantified the water budget, biological water use, and soil hydrological cycle across typical ecosystems in HRB, and can act as a reference for ecosystem management of the arid inland river basin.
Water Budget, Biological Water Use, and the Soil Hydrological Cycle across Typical Ecosystems of the Heihe River Basin
Qi Chen (Autor:in) / Yuhua Xing (Autor:in) / Dapeng Zhang (Autor:in) / Haitao Sun (Autor:in) / Pei Wang (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Variation of delta ^1^8O in water in Heihe river basin
British Library Online Contents | 2007
|Basin water resources real-time allocation: Case study in the Heihe River basin
British Library Online Contents | 2006
|Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin
DOAJ | 2017
|Transaction Costs in Water Markets in the Heihe River Basin in Northwest China
Online Contents | 2009
|