Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Investigation on the Discharge of Pollutants from Tunnel Fires
Many pollutants are generated during tunnel fires, such as smoke and toxic gases. How to control the smoke generated by tunnel fires was focused on in this paper. A series of experiments were carried out in a 1:10 model tunnel with dimensions of 6.0 m × 1.0 m × 0.7 m. The purpose was to investigate the smoke layer thickness and the heat exhaust coefficient of the tunnel mechanical smoke exhaust mode under longitudinal wind. Ethanol was employed as fuel, and the heat release rates were set to be 10.6 kW, 18.6 kW, and 31.9 kW. The exhaust velocity was 0.32–3.16 m/s, and the longitudinal velocity was 0–0.47 m/s. The temperature profile in the tunnel was measured, and the buoyant flow stratification regime was visualized by a laser sheet. The results showed that the longitudinal ventilation leads to a secondary stratification of the smoke flow. In the ceiling extract tunnel under longitudinal ventilation, considering the research results of the smoke layer height and the heat exhaust coefficient, a better scheme for fire-producing pollutants was that an exhaust velocity of 1.26–2.21 m/s (corresponding to the actual velocity of 4.0–7.0 m/s) should be used. The longitudinal velocity should be 0.16–0.32 m/s (corresponding to the actual velocity of 0.5–1.0 m/s).
Experimental Investigation on the Discharge of Pollutants from Tunnel Fires
Many pollutants are generated during tunnel fires, such as smoke and toxic gases. How to control the smoke generated by tunnel fires was focused on in this paper. A series of experiments were carried out in a 1:10 model tunnel with dimensions of 6.0 m × 1.0 m × 0.7 m. The purpose was to investigate the smoke layer thickness and the heat exhaust coefficient of the tunnel mechanical smoke exhaust mode under longitudinal wind. Ethanol was employed as fuel, and the heat release rates were set to be 10.6 kW, 18.6 kW, and 31.9 kW. The exhaust velocity was 0.32–3.16 m/s, and the longitudinal velocity was 0–0.47 m/s. The temperature profile in the tunnel was measured, and the buoyant flow stratification regime was visualized by a laser sheet. The results showed that the longitudinal ventilation leads to a secondary stratification of the smoke flow. In the ceiling extract tunnel under longitudinal ventilation, considering the research results of the smoke layer height and the heat exhaust coefficient, a better scheme for fire-producing pollutants was that an exhaust velocity of 1.26–2.21 m/s (corresponding to the actual velocity of 4.0–7.0 m/s) should be used. The longitudinal velocity should be 0.16–0.32 m/s (corresponding to the actual velocity of 0.5–1.0 m/s).
Experimental Investigation on the Discharge of Pollutants from Tunnel Fires
Lihua Zhai (Autor:in) / Zhongxing Nong (Autor:in) / Guanhong He (Autor:in) / Baochao Xie (Autor:in) / Zhisheng Xu (Autor:in) / Jiaming Zhao (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A model experimental study on backdraught in tunnel fires
British Library Online Contents | 2011
|Tunnel Vision: Responding to Road Tunnel Fires
British Library Online Contents | 2015
|Tunnel Fires, Tunnel Safety and Human Fallibility
British Library Online Contents | 2001
|Experimental evaluation of the heat flux induced by tunnel fires
British Library Online Contents | 2016
|Theoretical and Experimental Study on Concrete Spalling in Tunnel Fires
British Library Conference Proceedings | 2002
|