Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts
This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (R2-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive R2-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest R2-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.
Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts
This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (R2-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive R2-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest R2-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.
Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts
Lakshmana Rao Kalabarige (Autor:in) / Jayaprakash Sridhar (Autor:in) / Sivaramakrishnan Subbaram (Autor:in) / Palaniappan Prasath (Autor:in) / Ravindran Gobinath (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Advanced Machine Learning Techniques for Predicting Concrete Compressive Strength
DOAJ | 2025
|Predicting Confined Compressive Strength of Concrete Using Machine Learning Approach
Springer Verlag | 2023
|Machine learning based models for predicting compressive strength of geopolymer concrete
Springer Verlag | 2024
|