Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Revisiting the Indus Basin Model for an Energy Sustainable Pakistan
Water is vital and an essential entity directly and indirectly for all living creatures from their birth, whereas electrical energy has a dominant role in the growth of society in general and for human beings in particular. Optimal use of water and production of electrical energy at minimum cost are potential research challenges. Hydraulic energy is one of the cheapest and the most exploited renewable energy resource for power generation worldwide, and is in line with the seventh United Nations Sustainable Development Goal (SDG 7). The Indus basin is a trans-boundary basin, and its modeling has been a source of interest for scientists and policymakers. Indus Basin Model Revised (IBMR) has many variants, all focusing on optimal use of water for irrigation purposes. In this paper, the modified IBMR model is proposed addressing both agriculture and power generation aspects simultaneously. This model optimizes the Consumer Producer Surplus (CPS) by considering different water inflow probabilities. A parameter has been introduced in the modified objective function to manipulate the supply of water to agriculture and hydropower generation. The proposed model has been implemented in Generic Algebraic Modeling System (GAMS) and case studies have been investigated in presence and absence of power generation. The results obtained show that, with incorporation of hydropower, basin wide income is increased up to 11.83% using 50% exceedance probability, and results are in agreement with reference power generation estimated by National Transmission and Dispatch Company (NTDC). The SDG 7 targets ensure the reasonable, dependable, sustainable and contemporary energy access to all. The current research is focusing on how Pakistan would achieve the SDG 7 targets. By 2040, it is anticipated that Pakistan’s energy mix will have around 40% of hydropower and 16% of renewable energy.
Revisiting the Indus Basin Model for an Energy Sustainable Pakistan
Water is vital and an essential entity directly and indirectly for all living creatures from their birth, whereas electrical energy has a dominant role in the growth of society in general and for human beings in particular. Optimal use of water and production of electrical energy at minimum cost are potential research challenges. Hydraulic energy is one of the cheapest and the most exploited renewable energy resource for power generation worldwide, and is in line with the seventh United Nations Sustainable Development Goal (SDG 7). The Indus basin is a trans-boundary basin, and its modeling has been a source of interest for scientists and policymakers. Indus Basin Model Revised (IBMR) has many variants, all focusing on optimal use of water for irrigation purposes. In this paper, the modified IBMR model is proposed addressing both agriculture and power generation aspects simultaneously. This model optimizes the Consumer Producer Surplus (CPS) by considering different water inflow probabilities. A parameter has been introduced in the modified objective function to manipulate the supply of water to agriculture and hydropower generation. The proposed model has been implemented in Generic Algebraic Modeling System (GAMS) and case studies have been investigated in presence and absence of power generation. The results obtained show that, with incorporation of hydropower, basin wide income is increased up to 11.83% using 50% exceedance probability, and results are in agreement with reference power generation estimated by National Transmission and Dispatch Company (NTDC). The SDG 7 targets ensure the reasonable, dependable, sustainable and contemporary energy access to all. The current research is focusing on how Pakistan would achieve the SDG 7 targets. By 2040, it is anticipated that Pakistan’s energy mix will have around 40% of hydropower and 16% of renewable energy.
Revisiting the Indus Basin Model for an Energy Sustainable Pakistan
Abrar Hashmi (Autor:in) / Aamer Iqbal Bhatti (Autor:in) / Saira Ahmed (Autor:in) / Muhammad Atiq Ur Rehman Tariq (Autor:in) / Andre Savitsky (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Managing salinity in the Indus Basin of Pakistan
Online Contents | 2009
|Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan
DOAJ | 2021
|Modeling the Agricultural Water–Energy–Food Nexus in the Indus River Basin, Pakistan
Online Contents | 2016
|