Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Predict Students’ Attention in Online Learning Using EEG Data
In education, it is critical to monitor students’ attention and measure the extents to which students participate and the differences in their levels and abilities. The overall goal of this study was to increase the quality of distance education. In particular, in order to craft an approach that will effectively augment online learning using objective measures of brain activity, we propose a brain–computer interface (BCI) system that aims to use electroencephalography (EEG) signals for the detection of student’s attention during online classes. This system will aid teachers to objectively assess student attention and engagement. To this end, experiments were conducted on a public dataset; we extracted power spectral density (PSD) features using used a fast Fourier transform. Different attention indexes were calculated. Then, we built three different classification algorithms: k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF). Our proposed random forest classifier achieved a higher accuracy (96%) than KNN and SVM. Moreover, our results compared to state-of-the-art attention-detection systems with respect to the same dataset. Our findings revealed that the proposed RF approach can be used to effectively distinguish the attention state of a user.
Predict Students’ Attention in Online Learning Using EEG Data
In education, it is critical to monitor students’ attention and measure the extents to which students participate and the differences in their levels and abilities. The overall goal of this study was to increase the quality of distance education. In particular, in order to craft an approach that will effectively augment online learning using objective measures of brain activity, we propose a brain–computer interface (BCI) system that aims to use electroencephalography (EEG) signals for the detection of student’s attention during online classes. This system will aid teachers to objectively assess student attention and engagement. To this end, experiments were conducted on a public dataset; we extracted power spectral density (PSD) features using used a fast Fourier transform. Different attention indexes were calculated. Then, we built three different classification algorithms: k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF). Our proposed random forest classifier achieved a higher accuracy (96%) than KNN and SVM. Moreover, our results compared to state-of-the-art attention-detection systems with respect to the same dataset. Our findings revealed that the proposed RF approach can be used to effectively distinguish the attention state of a user.
Predict Students’ Attention in Online Learning Using EEG Data
Abeer Al-Nafjan (Autor:in) / Mashael Aldayel (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Using Artificial Intelligence to Predict Students’ Academic Performance in Blended Learning
DOAJ | 2022
|Students’ Conceptual Changes on the Air Pressure Learning Using Predict-Observe-Explain Strategy
BASE | 2020
|DOAJ | 2023
|