Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Filtrado digital neuronal difuso: caso MIMO
Los filtros identificadores multivariables (MIMO) son sistemas digitales adaptivos que cuentan con retroalimentación para que, de acuerdo a una función objetivo, ajusten su matriz de parámetros con la que se aproximan a la di-námica observable del sistema de referencia. Una forma de que un identificador cumpla con esas condiciones, es la de la lógica difusa por medio de sus mecanismos de in-ferencia que interpretan y seleccionan en una base de co-nocimiento la mejor matriz de parámetros. Estos mecanismos de selección mediante las redes neuronales permiten encontrar la respuesta con el mejor nivel de operación para cada cambio de estado (Shannon, 1948). En este artículo se considera en el modelo MIMO del filtrado digital, el proceso neuronal difuso para la estimación matricial de parámetros adaptiva, que se integra en el filtro de Kalman a través de la matriz de transición. Para ello se utilizó la red neuronal del tipo retropropagación en el mecanismo difuso, interpretando sus variables y sus respectivos niveles, seleccionando los mejores valores para ajustar automáticamente los valores de la matriz de transición. La simulación en Matlab presenta al filtrado digital neuronal difuso dando el seguimiento, observándose un funcional de error decreciente exponencialmente.
Filtrado digital neuronal difuso: caso MIMO
Los filtros identificadores multivariables (MIMO) son sistemas digitales adaptivos que cuentan con retroalimentación para que, de acuerdo a una función objetivo, ajusten su matriz de parámetros con la que se aproximan a la di-námica observable del sistema de referencia. Una forma de que un identificador cumpla con esas condiciones, es la de la lógica difusa por medio de sus mecanismos de in-ferencia que interpretan y seleccionan en una base de co-nocimiento la mejor matriz de parámetros. Estos mecanismos de selección mediante las redes neuronales permiten encontrar la respuesta con el mejor nivel de operación para cada cambio de estado (Shannon, 1948). En este artículo se considera en el modelo MIMO del filtrado digital, el proceso neuronal difuso para la estimación matricial de parámetros adaptiva, que se integra en el filtro de Kalman a través de la matriz de transición. Para ello se utilizó la red neuronal del tipo retropropagación en el mecanismo difuso, interpretando sus variables y sus respectivos niveles, seleccionando los mejores valores para ajustar automáticamente los valores de la matriz de transición. La simulación en Matlab presenta al filtrado digital neuronal difuso dando el seguimiento, observándose un funcional de error decreciente exponencialmente.
Filtrado digital neuronal difuso: caso MIMO
Juan Carlos García Infante (Autor:in) / José de J. Medel Juárez (Autor:in) / Juan Carlos Sánchez García (Autor:in)
2011
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elemento de separación con una canalización mejorada del filtrado
Europäisches Patentamt | 2022
|