Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An Experimental Method to Determine Rock Joint Stiffness under Constant Normal Load Conditions
Being physical mechanical parameters of joints, normal and shear stiffnesses are indispensable components of the numerical simulation and theoretical analysis of the behavior of joints. The objective of this work is to put forward an experimental method to determine joint stiffness under constant normal load (CNL) conditions. For this purpose, joint closure and direct shear tests under CNL conditions were conducted. Normal stiffness was determined by the ratio of normal stress increment and the corresponding normal displacement; the shear stiffness was calculated by the ratio of shear stress increment to the relative shear displacement. The average and instantaneous shear stiffness were distinguished. Experimental results showed that joint normal and shear stiffness are time and spatially varying parameters during direct shearing. With increasing normal stress, average shear stiffness, maximum instantaneous shear stiffness, and normal stiffness increases. Normal stiffness was about 26–28 times higher than the average shear stiffness under one normal stress level. Average shear stiffness was little influenced by shear velocity. Instantaneous shear stiffness shows the velocity-dependent behavior. Maximum instantaneous shear stiffness decreases rapidly with increasing shear rate. At lower shear velocity, maximum instantaneous shear stiffness is higher than normal stiffness; minimum instantaneous shear stiffness can be negative and the absolute value also decreases with faster shear velocity. These findings provide a reference for selecting the appropriate value of normal and shear stiffness for evaluation of the mechanical response of interface.
An Experimental Method to Determine Rock Joint Stiffness under Constant Normal Load Conditions
Being physical mechanical parameters of joints, normal and shear stiffnesses are indispensable components of the numerical simulation and theoretical analysis of the behavior of joints. The objective of this work is to put forward an experimental method to determine joint stiffness under constant normal load (CNL) conditions. For this purpose, joint closure and direct shear tests under CNL conditions were conducted. Normal stiffness was determined by the ratio of normal stress increment and the corresponding normal displacement; the shear stiffness was calculated by the ratio of shear stress increment to the relative shear displacement. The average and instantaneous shear stiffness were distinguished. Experimental results showed that joint normal and shear stiffness are time and spatially varying parameters during direct shearing. With increasing normal stress, average shear stiffness, maximum instantaneous shear stiffness, and normal stiffness increases. Normal stiffness was about 26–28 times higher than the average shear stiffness under one normal stress level. Average shear stiffness was little influenced by shear velocity. Instantaneous shear stiffness shows the velocity-dependent behavior. Maximum instantaneous shear stiffness decreases rapidly with increasing shear rate. At lower shear velocity, maximum instantaneous shear stiffness is higher than normal stiffness; minimum instantaneous shear stiffness can be negative and the absolute value also decreases with faster shear velocity. These findings provide a reference for selecting the appropriate value of normal and shear stiffness for evaluation of the mechanical response of interface.
An Experimental Method to Determine Rock Joint Stiffness under Constant Normal Load Conditions
Dong Li (Autor:in) / Guanfeng An (Autor:in) / Xiangsheng Chen (Autor:in) / Wengang Dang (Autor:in) / Dongyang Li (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Shear behavior of rock joints under constant normal stiffness conditions
British Library Conference Proceedings | 2002
|Shear behaviour of rock joints under constant normal stiffness conditions
British Library Conference Proceedings | 2001
|Experimental study for shear behavior of pseudo rock joint under constant normal stiffness condition
British Library Conference Proceedings | 2005
|Elsevier | 2024
|Modeling of Bolted Joint Behaviour under Constant Normal Stiffness Conditions-Laboratory Study
British Library Conference Proceedings | 2000
|