Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Rapid Earthquake Damage Assessment and Education to Improve Earthquake Response Efficiency and Community Resilience
Southeastern Europe faces a significant earthquake threat, endangering lives, property, and infrastructure thus jeopardizing sustainable development. The development of a Rapid Earthquake Damage Assessment System (REDAS) designed to deliver crucial earthquake damage information for scenario planning, real-time response, and bolstering public awareness and preparedness is presented. In doing so, REDAS enhances community resilience and safeguards sustainability. REDAS comprises a Rapid Earthquake Damage Assessment platform (REDA.p), a smartphone application, and an Educational Hub (Edu.Hub). REDA.p provides both scenario-based and near real-time seismic damage evaluation of structures, gas pipelines, and geotechnical failures, based on harmonized Ground Motion Prediction Equations and a comprehensive building taxonomy scheme covering the area under investigation. To assess regional landslide hazards, the Infinite Slope Model and a statistics-based model have been implemented, alongside a statistical model for liquefaction probability assessment. Validated against historical data, REDA.p integrates real-time input from key earthquake monitoring networks in the region, covering cross-border areas as well, while in designated urban zones, the system is enhanced by real-time data from a dense earthquake monitoring network deployed in selected school buildings. The smartphone app and Edu.Hub disseminate critical information, guidelines, and tools to improve public prevention, preparedness, and response capacities, thereby enhancing societal resilience.
Rapid Earthquake Damage Assessment and Education to Improve Earthquake Response Efficiency and Community Resilience
Southeastern Europe faces a significant earthquake threat, endangering lives, property, and infrastructure thus jeopardizing sustainable development. The development of a Rapid Earthquake Damage Assessment System (REDAS) designed to deliver crucial earthquake damage information for scenario planning, real-time response, and bolstering public awareness and preparedness is presented. In doing so, REDAS enhances community resilience and safeguards sustainability. REDAS comprises a Rapid Earthquake Damage Assessment platform (REDA.p), a smartphone application, and an Educational Hub (Edu.Hub). REDA.p provides both scenario-based and near real-time seismic damage evaluation of structures, gas pipelines, and geotechnical failures, based on harmonized Ground Motion Prediction Equations and a comprehensive building taxonomy scheme covering the area under investigation. To assess regional landslide hazards, the Infinite Slope Model and a statistics-based model have been implemented, alongside a statistical model for liquefaction probability assessment. Validated against historical data, REDA.p integrates real-time input from key earthquake monitoring networks in the region, covering cross-border areas as well, while in designated urban zones, the system is enhanced by real-time data from a dense earthquake monitoring network deployed in selected school buildings. The smartphone app and Edu.Hub disseminate critical information, guidelines, and tools to improve public prevention, preparedness, and response capacities, thereby enhancing societal resilience.
Rapid Earthquake Damage Assessment and Education to Improve Earthquake Response Efficiency and Community Resilience
Konstantinos Papatheodorou (Autor:in) / Nikolaos Theodoulidis (Autor:in) / Nikolaos Klimis (Autor:in) / Can Zulfikar (Autor:in) / Dragos Vintila (Autor:in) / Vladlen Cardanet (Autor:in) / Emmanouil Kirtas (Autor:in) / Dragos Toma-Danila (Autor:in) / Basil Margaris (Autor:in) / Yasin Fahjan (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2015
|EARTHQUAKE DAMAGE - Earthquake damage in 'mountain tunnels'
Online Contents | 2012
Community-Level resilience analysis using earthquake-tsunami fragility surfaces
DOAJ | 2024
|