Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modelling and Prediction of Water Quality by Using Artificial Intelligence
Artificial intelligence methods can remarkably reduce costs for water supply and sanitation systems and help ensure compliance with the quality of drinking and wastewater treatment. Therefore, modelling and predicting water quality to control water pollution has been widely researched. The novelty of the proposed system is presented to develop an efficient operation of monitoring drinking water to ensure a sustainable and friendly green environment. In this work, the adaptive neuro-fuzzy inference system (ANFIS) algorithm was developed to predict the water quality index (WQI). Feed-forward neural network (FFNN) and K-nearest neighbors were applied to classify water quality. The dataset has eight significant parameters, but seven parameters were considered to show significant values. The proposed methodology was developed based on these statistical parameters. Prediction results demonstrated that the ANFIS model was superior for the prediction of WQI values. Nevertheless, the FFNN algorithm achieved the highest accuracy (100%) for water quality classification (WQC). Furthermore, the ANFIS model accurately predicted WQI, and the FFNN model showed superior robustness in classifying the WQC. In addition, the ANFIS model showed accuracy during the testing phase, with a regression coefficient of 96.17% for predicting WQI, and the FFNN model achieved the highest accuracy (100%) for WQC. This proposed method, using advanced artificial intelligence, can aid in water treatment and management.
Modelling and Prediction of Water Quality by Using Artificial Intelligence
Artificial intelligence methods can remarkably reduce costs for water supply and sanitation systems and help ensure compliance with the quality of drinking and wastewater treatment. Therefore, modelling and predicting water quality to control water pollution has been widely researched. The novelty of the proposed system is presented to develop an efficient operation of monitoring drinking water to ensure a sustainable and friendly green environment. In this work, the adaptive neuro-fuzzy inference system (ANFIS) algorithm was developed to predict the water quality index (WQI). Feed-forward neural network (FFNN) and K-nearest neighbors were applied to classify water quality. The dataset has eight significant parameters, but seven parameters were considered to show significant values. The proposed methodology was developed based on these statistical parameters. Prediction results demonstrated that the ANFIS model was superior for the prediction of WQI values. Nevertheless, the FFNN algorithm achieved the highest accuracy (100%) for water quality classification (WQC). Furthermore, the ANFIS model accurately predicted WQI, and the FFNN model showed superior robustness in classifying the WQC. In addition, the ANFIS model showed accuracy during the testing phase, with a regression coefficient of 96.17% for predicting WQI, and the FFNN model achieved the highest accuracy (100%) for WQC. This proposed method, using advanced artificial intelligence, can aid in water treatment and management.
Modelling and Prediction of Water Quality by Using Artificial Intelligence
Mosleh Hmoud Al-Adhaileh (Autor:in) / Fawaz Waselallah Alsaade (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Cardiac Disease Prediction using Artificial Intelligence
IEEE | 2023
|Artificial Intelligence Technologies in Surface Water Quality Monitoring
Online Contents | 2006
|Artificial intelligence technologies in surface water quality monitoring
Taylor & Francis Verlag | 2006
|Comprehensive approach for scour modelling using artificial intelligence
Taylor & Francis Verlag | 2023
|