Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
On the use of polar coordinate system in the projective graphic drawings
Projective graphics is a polyhedra simulation method, which is based on the use of trace diagrams of initial polyhedron. Previously developed computer software allows using Cartesian coordinates. In some cases it is advisable to use polar coordinate system for description of projective graphics drawings. Using the example of icosahedron the authors analyzed the advantages of using projective graphics drawings in the polar coordinate system. The transition to the polar coordinate system is a tool that allows using certain patterns of projective graphics drawings in the process of calculation. When using polar coordinate system the search of Polar correspondence for the directs is simplified. In order to analyze the two lines in the polar coordinate system it is enough to compare the corresponding coefficients of the equations of these lines. The authors consider a diagram of the icosahedron in polar coordinates, and a corresponding fragment of calculation program in the Mathematica system. Some examples of forming based on icosahedrons are offered. Optimization of computer programs using polar coordinate system will simplifies the calculations of projective graphics drawings, accelerates the process of constructing three-dimensional models, which expand the possibilities of selecting original solutions. Finally, the authors conclude that it is appropriate to use the polar coordinate system only in the construction of projective graphics diagrams of the planes system having rich symmetry. All Platonic and Archimedean solids, Catalan solid possess this property.
On the use of polar coordinate system in the projective graphic drawings
Projective graphics is a polyhedra simulation method, which is based on the use of trace diagrams of initial polyhedron. Previously developed computer software allows using Cartesian coordinates. In some cases it is advisable to use polar coordinate system for description of projective graphics drawings. Using the example of icosahedron the authors analyzed the advantages of using projective graphics drawings in the polar coordinate system. The transition to the polar coordinate system is a tool that allows using certain patterns of projective graphics drawings in the process of calculation. When using polar coordinate system the search of Polar correspondence for the directs is simplified. In order to analyze the two lines in the polar coordinate system it is enough to compare the corresponding coefficients of the equations of these lines. The authors consider a diagram of the icosahedron in polar coordinates, and a corresponding fragment of calculation program in the Mathematica system. Some examples of forming based on icosahedrons are offered. Optimization of computer programs using polar coordinate system will simplifies the calculations of projective graphics drawings, accelerates the process of constructing three-dimensional models, which expand the possibilities of selecting original solutions. Finally, the authors conclude that it is appropriate to use the polar coordinate system only in the construction of projective graphics diagrams of the planes system having rich symmetry. All Platonic and Archimedean solids, Catalan solid possess this property.
On the use of polar coordinate system in the projective graphic drawings
Ivashchenko Andrey Viktorovich (Autor:in) / Kondrat’eva Tat’yana Mikhaylovna (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Graphic Processes in Architectural Study Drawings
Taylor & Francis Verlag | 1992
|Graphic design techniques for architectural drawings
TIBKAT | 1990
|