Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Simultaneous Scheduling and Synthesis of Industrial Water Allocation Networks
This work addresses integration of batch scheduling with water allocation, recycle and reuse opportunities for freshwater minimization in batch plants via sequential and simultaneous methodologies. The presented scheduling model is based on state task network representation and unit-specific event based continuous time formulation. In the production scheduling model, a three-index finish time variable has been considered for handling multiple states having different processing time durations for the same task in a processing unit. The scheduling model introduces constraints to handle storage violations for production and consumption of the same state in the same unit. In the water network model for freshwater minimization, a regeneration unit along with a central water storage tank has been included to exploit the possibility of water reuse in the washing units. Four case studies are solved with single and multiple contaminants to evaluate the performance of the proposed model, which gives better savings in terms of freshwater consumption and thus also minimizes the effluent generation. Additionally, a preliminary analysis for two-objective optimization is presented where revenue is maximized, and the total water cost is minimized simultaneously using the weighted-sum method.
Simultaneous Scheduling and Synthesis of Industrial Water Allocation Networks
This work addresses integration of batch scheduling with water allocation, recycle and reuse opportunities for freshwater minimization in batch plants via sequential and simultaneous methodologies. The presented scheduling model is based on state task network representation and unit-specific event based continuous time formulation. In the production scheduling model, a three-index finish time variable has been considered for handling multiple states having different processing time durations for the same task in a processing unit. The scheduling model introduces constraints to handle storage violations for production and consumption of the same state in the same unit. In the water network model for freshwater minimization, a regeneration unit along with a central water storage tank has been included to exploit the possibility of water reuse in the washing units. Four case studies are solved with single and multiple contaminants to evaluate the performance of the proposed model, which gives better savings in terms of freshwater consumption and thus also minimizes the effluent generation. Additionally, a preliminary analysis for two-objective optimization is presented where revenue is maximized, and the total water cost is minimized simultaneously using the weighted-sum method.
Simultaneous Scheduling and Synthesis of Industrial Water Allocation Networks
Sudha Chauhan (Autor:in) / Munawar A. Shaik (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Optimal scheduling and resource allocation in project networks
TIBKAT | 1973
|Scheduling Algorithms for Downlink Rate Allocation in Heterogeneous CDMA Networks
British Library Online Contents | 2002
|Solving Optimal Allocation Problems of Resources in Construction Scheduling Using Neural Networks
British Library Online Contents | 1993
|Resource Allocation Heuristics for Project Scheduling
British Library Conference Proceedings | 2013
|