Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation of PM2.5 Particulate Matter and Noise Pollution in Tikrit University Based on GIS and Statistical Modeling
In this paper, we assess the extent of environmental pollution in terms of PM2.5 particulate matter and noise in Tikrit University, located in Tikrit City of Iraq. The geographic information systems (GIS) technology was used for data analysis. Moreover, we built two multiple linear regression models (based on two different data inputs) for the prediction of PM2.5 particulate matter, which were based on the explanatory variables of maximum and minimum noise, temperature, and humidity. Furthermore, the maximum prediction coefficient R2 of the best models was 0.82, with a validated (via testing data) coefficient R2 of 0.94. From the actual total distribution of PM2.5 particulate values ranging from 35–58 μg/m3, our best model managed to predict values between 34.9–60.6 μg/m3. At the end of the study, the overall air quality was determined between moderate and harmful. In addition, the overall detected noise ranged from 49.30–85.79 dB, which inevitably designated the study area to be categorized as a noisy zone, despite being an educational institution.
Evaluation of PM2.5 Particulate Matter and Noise Pollution in Tikrit University Based on GIS and Statistical Modeling
In this paper, we assess the extent of environmental pollution in terms of PM2.5 particulate matter and noise in Tikrit University, located in Tikrit City of Iraq. The geographic information systems (GIS) technology was used for data analysis. Moreover, we built two multiple linear regression models (based on two different data inputs) for the prediction of PM2.5 particulate matter, which were based on the explanatory variables of maximum and minimum noise, temperature, and humidity. Furthermore, the maximum prediction coefficient R2 of the best models was 0.82, with a validated (via testing data) coefficient R2 of 0.94. From the actual total distribution of PM2.5 particulate values ranging from 35–58 μg/m3, our best model managed to predict values between 34.9–60.6 μg/m3. At the end of the study, the overall air quality was determined between moderate and harmful. In addition, the overall detected noise ranged from 49.30–85.79 dB, which inevitably designated the study area to be categorized as a noisy zone, despite being an educational institution.
Evaluation of PM2.5 Particulate Matter and Noise Pollution in Tikrit University Based on GIS and Statistical Modeling
Mohammed Hashim Ameen (Autor:in) / Huda Jamal Jumaah (Autor:in) / Bahareh Kalantar (Autor:in) / Naonori Ueda (Autor:in) / Alfian Abdul Halin (Autor:in) / Abdullah Saeb Tais (Autor:in) / Sarah Jamal Jumaah (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2024
|DOAJ | 2023
|