Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Numerical Stability Analysis of Sloped Geosynthetic Encased Stone Column Composite Foundation under Embankment Based on Equivalent Method
As an effective technology for the rapid treatment of soft-soil foundations, geosynthetic encased stone column (GESC) composite foundations are commonly used in various embankment engineerings, including those situated on sloped soft foundations. Nevertheless, there is still a scarcity of stability studies for sloped GESC composite foundations. Several 3D numerical models for sloped GESC composite foundations were established using an equivalent method. The influences of the area replacement ratio and the tensile strength of geosynthetic encasement on the stability were investigated. The results showed that the stability increased nonlinearly with the area replacement ratio, and there existed an optimal area replacement ratio (e.g., 24.56% in this study) to balance the safety and economic requirements. The stability increased linearly with the tensile strength of geosynthetic encasement at low tensile strength levels (lower than 105 kN/m in this study), and the impact was relatively limited compared with that of the area replacement ratio. In addition, the stability generally decreased nonlinearly as the foundation slope decreased, and high-angle (foundation slope close to 30°) sloped GESC composite foundations are recommended to be treated with multiple reinforcement techniques. The relationship between the minimum area replacement ratio and the foundation slope was further quantified by an exponential function, allowing for the determination of the area replacement ratio of various sloped GESC composite foundations and providing theoretical guidance for engineering practice.
Numerical Stability Analysis of Sloped Geosynthetic Encased Stone Column Composite Foundation under Embankment Based on Equivalent Method
As an effective technology for the rapid treatment of soft-soil foundations, geosynthetic encased stone column (GESC) composite foundations are commonly used in various embankment engineerings, including those situated on sloped soft foundations. Nevertheless, there is still a scarcity of stability studies for sloped GESC composite foundations. Several 3D numerical models for sloped GESC composite foundations were established using an equivalent method. The influences of the area replacement ratio and the tensile strength of geosynthetic encasement on the stability were investigated. The results showed that the stability increased nonlinearly with the area replacement ratio, and there existed an optimal area replacement ratio (e.g., 24.56% in this study) to balance the safety and economic requirements. The stability increased linearly with the tensile strength of geosynthetic encasement at low tensile strength levels (lower than 105 kN/m in this study), and the impact was relatively limited compared with that of the area replacement ratio. In addition, the stability generally decreased nonlinearly as the foundation slope decreased, and high-angle (foundation slope close to 30°) sloped GESC composite foundations are recommended to be treated with multiple reinforcement techniques. The relationship between the minimum area replacement ratio and the foundation slope was further quantified by an exponential function, allowing for the determination of the area replacement ratio of various sloped GESC composite foundations and providing theoretical guidance for engineering practice.
Numerical Stability Analysis of Sloped Geosynthetic Encased Stone Column Composite Foundation under Embankment Based on Equivalent Method
Bo-Cheng Peng (Autor:in) / Ling Zhang (Autor:in) / Ze-Yu Xu (Autor:in) / Peng-Lu Cui (Autor:in) / Yang-Yang Liu (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Numerical analysis of geosynthetic encased stone column
British Library Conference Proceedings | 2006
|Simulation of Geosynthetic Encased Stone Column Under Embankment Loading in Soft Clay
Springer Verlag | 2022
|British Library Online Contents | 2010
|