Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Land-Use/Land Cover Changes Contribute to Land Surface Temperature: A Case Study of the Upper Indus Basin of Pakistan
Land-use/land cover (LULC) changes have an impact on land surface temperature (LST) at the local, regional, and global scales. To simulate the LULC and LST changes of the environmentally important area of northern Pakistan, this research focused on spatio-temporal LULC and associated LST changes since 1987 and made predictions to 2047. We classified LULC from Landsat TM and ETM data, using the maximum probability supervised categorization approach. LST was retrieved using the Radiative Transfer Equation (RTE) methodology. Furthermore, we simulated LULC using the integrated approaches of Cellular Automata (CA) and Weighted Evidence (WE) and used a regression model to predict LST. The built-up areas and vegetation have increased by 2.1% and 11% due to a decline in the barren land by −8.5% during the last 30 years. The LULC is expected to increase, particularly the built-up and vegetation classes by 2.74% and 13.66%, respectively, and the barren land would decline by −4.2% by 2047. Consequently, the higher LST classes (i.e., 27 °C to <30 °C and ≥30 °C) soared up by about 25.18% and 34.26%, respectively, during the study period, which would further expand to 30.19% and 14.97% by 2047. The lower LST class (i.e., 12 °C to <21 °C) indicated a downtrend of about −41.29% and would further decrease to −3.13% in the next 30 years. The study findings are useful for planning and management, especially for climatologists, land-use planners, and researchers in sustainable land use with rapid urbanization.
Land-Use/Land Cover Changes Contribute to Land Surface Temperature: A Case Study of the Upper Indus Basin of Pakistan
Land-use/land cover (LULC) changes have an impact on land surface temperature (LST) at the local, regional, and global scales. To simulate the LULC and LST changes of the environmentally important area of northern Pakistan, this research focused on spatio-temporal LULC and associated LST changes since 1987 and made predictions to 2047. We classified LULC from Landsat TM and ETM data, using the maximum probability supervised categorization approach. LST was retrieved using the Radiative Transfer Equation (RTE) methodology. Furthermore, we simulated LULC using the integrated approaches of Cellular Automata (CA) and Weighted Evidence (WE) and used a regression model to predict LST. The built-up areas and vegetation have increased by 2.1% and 11% due to a decline in the barren land by −8.5% during the last 30 years. The LULC is expected to increase, particularly the built-up and vegetation classes by 2.74% and 13.66%, respectively, and the barren land would decline by −4.2% by 2047. Consequently, the higher LST classes (i.e., 27 °C to <30 °C and ≥30 °C) soared up by about 25.18% and 34.26%, respectively, during the study period, which would further expand to 30.19% and 14.97% by 2047. The lower LST class (i.e., 12 °C to <21 °C) indicated a downtrend of about −41.29% and would further decrease to −3.13% in the next 30 years. The study findings are useful for planning and management, especially for climatologists, land-use planners, and researchers in sustainable land use with rapid urbanization.
Land-Use/Land Cover Changes Contribute to Land Surface Temperature: A Case Study of the Upper Indus Basin of Pakistan
Akhtar Rehman (Autor:in) / Jun Qin (Autor:in) / Amjad Pervez (Autor:in) / Muhammad Sadiq Khan (Autor:in) / Siddique Ullah (Autor:in) / Khalid Ahmad (Autor:in) / Nazir Ur Rehman (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2020
|