Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake
The restoration of eutrophic river and lake ecosystems is an important task that has been conducted in numerous ways and at many locations around the world. However, such improvements of water quality are often temporary, as such ecosystems are dynamic, and restoration measures must be reassessed and modified. The restored catchment of a shallow eutrophic lake, Lake Seeburg, in central Germany, was monitored over a 13-month period. The restoration of the inflowing river a decade earlier included riverbed prolongation, gradient reduction, and the construction of wetlands upstream, which reduced the sediment input and silting up of the lake. As nutrient fluxes in the tributaries were still high, these restoration measures seemed to be insufficiently effective. This study aimed to locate nutrient hotspots and quantify the nutrient balances of the catchment. Nitrogen and phosphorous concentrations, river discharge, hydrochemical parameters (pH, temperature, oxygen concentrations) and turbidity, as a proxy for suspended particulate matter (SPM), were monitored monthly. Our data show that the lake functions as a nitrogen sink, whereas the phosphorous fluxes follow a seasonal trend with the negative balance in winter turning into a positive balance in summer with the onset of cyanobacterial blooms. The release of phosphorous from the wetland throughout the year indicates supersaturation and thus a permanent input of phosphorous into the lake. Consequently, phosphorus loading in the lake is quite high, fostering eutrophication. Furthermore, the very low precipitation rates during the study highlighted that the lake was not only controlled by external nutrient loads but rather was sustained by high internal phosphorous loading. Consequently, the remediation action of creating the wetland to restore the sedimentation trap and nutrient accumulation capacity was not sufficient.
Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake
The restoration of eutrophic river and lake ecosystems is an important task that has been conducted in numerous ways and at many locations around the world. However, such improvements of water quality are often temporary, as such ecosystems are dynamic, and restoration measures must be reassessed and modified. The restored catchment of a shallow eutrophic lake, Lake Seeburg, in central Germany, was monitored over a 13-month period. The restoration of the inflowing river a decade earlier included riverbed prolongation, gradient reduction, and the construction of wetlands upstream, which reduced the sediment input and silting up of the lake. As nutrient fluxes in the tributaries were still high, these restoration measures seemed to be insufficiently effective. This study aimed to locate nutrient hotspots and quantify the nutrient balances of the catchment. Nitrogen and phosphorous concentrations, river discharge, hydrochemical parameters (pH, temperature, oxygen concentrations) and turbidity, as a proxy for suspended particulate matter (SPM), were monitored monthly. Our data show that the lake functions as a nitrogen sink, whereas the phosphorous fluxes follow a seasonal trend with the negative balance in winter turning into a positive balance in summer with the onset of cyanobacterial blooms. The release of phosphorous from the wetland throughout the year indicates supersaturation and thus a permanent input of phosphorous into the lake. Consequently, phosphorus loading in the lake is quite high, fostering eutrophication. Furthermore, the very low precipitation rates during the study highlighted that the lake was not only controlled by external nutrient loads but rather was sustained by high internal phosphorous loading. Consequently, the remediation action of creating the wetland to restore the sedimentation trap and nutrient accumulation capacity was not sufficient.
Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake
Solveig Nachtigall (Autor:in) / Christine Heim (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Environmental Impacts of Sediment Nutrients in Hyper Eutrophic Reservoir in South India
HENRY – Bundesanstalt für Wasserbau (BAW) | 2010
|Phosphorus release from sediment in a small eutrophic Italian lake
British Library Online Contents | 2005
|Restoration Attempt of Submerged Macrophytes in an Eutrophic Shallow Lake in Japan
British Library Conference Proceedings | 2008
|Practices for Eutrophic Shallow Lake Water Remediation and Restoration: A Critical Literature Review
DOAJ | 2023
|