Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Light Pollution Mapping from a Stratospheric High-Altitude Balloon Platform
The NITELite (Night Imaging of Terrestrial Environments Lite) system is a method of collecting regional-scale light emissions data from a latex high-altitude balloon (LHAB) platform. An LHAB can reach altitudes of 25-30km from where the nighttime imaging is performed. LHAB missions are relatively low cost (<$2000US/flight) and easy to repeat. A NITELite mission collects data with high resolution (<10m/px), color information (RGB) over a region of thousands of square kilometers. This system provides a new source of data for remote sensing of artificial light at night (ALAN) research, filling the data gap between aerial and satellite observations. Nighttime LHAB-based imaging can provide data to support fields of ALAN research such as observation of real-time variability, monitoring effects of seasonal changes and events of interest, and measuring angular dependence of ALAN sources. NITELite includes an imaging system, an inertial and positional recording on-board-computer, and an altitude control system. Preliminary results demonstrate the potential of this method for future ALAN research.
Light Pollution Mapping from a Stratospheric High-Altitude Balloon Platform
The NITELite (Night Imaging of Terrestrial Environments Lite) system is a method of collecting regional-scale light emissions data from a latex high-altitude balloon (LHAB) platform. An LHAB can reach altitudes of 25-30km from where the nighttime imaging is performed. LHAB missions are relatively low cost (<$2000US/flight) and easy to repeat. A NITELite mission collects data with high resolution (<10m/px), color information (RGB) over a region of thousands of square kilometers. This system provides a new source of data for remote sensing of artificial light at night (ALAN) research, filling the data gap between aerial and satellite observations. Nighttime LHAB-based imaging can provide data to support fields of ALAN research such as observation of real-time variability, monitoring effects of seasonal changes and events of interest, and measuring angular dependence of ALAN sources. NITELite includes an imaging system, an inertial and positional recording on-board-computer, and an altitude control system. Preliminary results demonstrate the potential of this method for future ALAN research.
Light Pollution Mapping from a Stratospheric High-Altitude Balloon Platform
Ken Walczak (Autor:in) / Geza Gyuk (Autor:in) / Jesus Garcia (Autor:in) / Cynthia Tarr (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0