Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental study of wave overtopping at rubble mound seawalls
Abstract Seawalls play a significant role in protecting coastal areas against wave attack and flooding. The accurate estimation of wave overtopping at seawalls is therefore crucial to adequately protect people and infrastructure in these regions. In this study, the mean wave overtopping rate at rubble mound seawalls was investigated through 140 small-scale physical model tests which adds to the limited existing data for this structure type in the extended CLASH database called EurOtop (2018). The combined dataset is used to evaluate the prediction skill of existing empirical formulae and to identify their limitations. The role of wave steepness on the mean overtopping rate is closely examined as it has not yet been considered properly in the EurOtop (2018) formulation. A new formula was derived using dimensional analysis and physical justifications of the overtopping phenomenon. The formula was found to provide a 40% decrease in RMSE in comparison to that of the EurOtop (2018). In addition, the new formula yields a BIAS ≈0, a significant improvement compared to −0.38 (non-dimensional discharge) of the EurOtop (2018) formula. The proposed formula has a simple form where non-dimensional overtopping discharge depends only on the relative crest freeboard and wave steepness, which were found to be the most important variables based on a sensitivity analysis.
Highlights The limitations of the existing empirical formulae for the prediction of mean wave overtopping rate at rubble mound seawalls were investigated. 140 small-scale physical model tests were conducted to cover the identified gaps in terms of some key parameters. Observations showed that wave steepness is an important parameter for the wave overtopping on rubble mound structures. A new prediction formula for mean wave overtopping at rubble mound seawalls was proposed using regression analysis and physical justifications. The newly proposed formula provides a 40% of improvement in the prediction accuracy in comparison to EurOtop formula.
Experimental study of wave overtopping at rubble mound seawalls
Abstract Seawalls play a significant role in protecting coastal areas against wave attack and flooding. The accurate estimation of wave overtopping at seawalls is therefore crucial to adequately protect people and infrastructure in these regions. In this study, the mean wave overtopping rate at rubble mound seawalls was investigated through 140 small-scale physical model tests which adds to the limited existing data for this structure type in the extended CLASH database called EurOtop (2018). The combined dataset is used to evaluate the prediction skill of existing empirical formulae and to identify their limitations. The role of wave steepness on the mean overtopping rate is closely examined as it has not yet been considered properly in the EurOtop (2018) formulation. A new formula was derived using dimensional analysis and physical justifications of the overtopping phenomenon. The formula was found to provide a 40% decrease in RMSE in comparison to that of the EurOtop (2018). In addition, the new formula yields a BIAS ≈0, a significant improvement compared to −0.38 (non-dimensional discharge) of the EurOtop (2018) formula. The proposed formula has a simple form where non-dimensional overtopping discharge depends only on the relative crest freeboard and wave steepness, which were found to be the most important variables based on a sensitivity analysis.
Highlights The limitations of the existing empirical formulae for the prediction of mean wave overtopping rate at rubble mound seawalls were investigated. 140 small-scale physical model tests were conducted to cover the identified gaps in terms of some key parameters. Observations showed that wave steepness is an important parameter for the wave overtopping on rubble mound structures. A new prediction formula for mean wave overtopping at rubble mound seawalls was proposed using regression analysis and physical justifications. The newly proposed formula provides a 40% of improvement in the prediction accuracy in comparison to EurOtop formula.
Experimental study of wave overtopping at rubble mound seawalls
Koosheh, Ali (Autor:in) / Etemad-Shahidi, Amir (Autor:in) / Cartwright, Nick (Autor:in) / Tomlinson, Rodger (Autor:in) / van Gent, Marcel R.A. (Autor:in)
Coastal Engineering ; 172
26.11.2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Wave overtopping layer thickness on the crest of rubble mound seawalls
Elsevier | 2024
|Wave overtopping layer thickness on the crest of rubble mound seawalls
Elsevier | 2023
|Wave Overtopping Over Rubble Mound Breakwaters
British Library Conference Proceedings | 2001
|Wave Overtopping of Rubble Mound Breakwaters
ASCE | 1999
|