Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modelling the soil resistance on seabed pipelines during large cycles of lateral movement
AbstractNew oil and gas developments in remote offshore locations require the construction of long seabed pipelines that operate under high temperature and pressure. To accommodate the resulting thermal expansion, a novel design solution is to allow controlled lateral buckling. This design solution is reliant on accurate modelling of the pipe–soil interaction during large-amplitude lateral movements, during which large soil berms are created as the sweeping pipeline erodes the seabed. This paper describes a simple framework that allows existing pipe–soil interaction models to be extended to capture this large deformation behaviour using a kinematic hardening model. The hardening parameter, which governs the resistance created by the berm, is the area of berm currently being transported in front of the pipe. Cyclic behaviour is captured by the deposition and collection of berms when the pipe changes direction. This modelling framework mimics experimental observations, and reproduces the resulting load–displacement behaviour. Only four parameters are involved, each with physical meaning, and the framework is amenable to inclusion within the structural analysis of a pipeline. Limited experimental data on this behaviour is currently available and case-specific calibration of the model is necessary.
Modelling the soil resistance on seabed pipelines during large cycles of lateral movement
AbstractNew oil and gas developments in remote offshore locations require the construction of long seabed pipelines that operate under high temperature and pressure. To accommodate the resulting thermal expansion, a novel design solution is to allow controlled lateral buckling. This design solution is reliant on accurate modelling of the pipe–soil interaction during large-amplitude lateral movements, during which large soil berms are created as the sweeping pipeline erodes the seabed. This paper describes a simple framework that allows existing pipe–soil interaction models to be extended to capture this large deformation behaviour using a kinematic hardening model. The hardening parameter, which governs the resistance created by the berm, is the area of berm currently being transported in front of the pipe. Cyclic behaviour is captured by the deposition and collection of berms when the pipe changes direction. This modelling framework mimics experimental observations, and reproduces the resulting load–displacement behaviour. Only four parameters are involved, each with physical meaning, and the framework is amenable to inclusion within the structural analysis of a pipeline. Limited experimental data on this behaviour is currently available and case-specific calibration of the model is necessary.
Modelling the soil resistance on seabed pipelines during large cycles of lateral movement
White, D.J. (Autor:in) / Cheuk, C.Y. (Autor:in)
Marine Structures ; 21 ; 59-79
02.05.2007
21 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Pipeline , Soil , Clay , Lateral buckling
Modelling the soil resistance on seabed pipelines during large cycles of lateral movement
British Library Online Contents | 2008
|Modelling the soil resistance on seabed pipelines during large cycles of lateral movement
Online Contents | 2008
|Modelling the dynamic embedment of seabed pipelines
Online Contents | 2011
|Modelling the dynamic embedment of seabed pipelines
British Library Online Contents | 2011
|Catenary riser sliding and rolling on seabed during induced lateral movement
Online Contents | 2015
|