Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Seismic retrofitting of framed structures with stainless steel
AbstractThe appropriate use of special metals such as stainless steels (SSs) for structural applications in building systems provides possibilities for a more efficient balance between whole-life costs and in-service performance. The present paper assesses the feasibility of the application of SSs for seismic retrofitting of framed structures, either braced (CBFs) or moment resisting (MRFs) frames. In so doing, inelastic analyses have been carried out on a set of multi-storey CBFs and MRFs. The results of both inelastic static (pushovers) and dynamic (response history) analyses demonstrate that systems retrofitted with SSs exhibit enhanced plastic deformations and excellent energy absorbing capacity. The augmented strain hardening of SS is beneficial in preventing local buckling in steel members in both MRFs and CBFs. The analytical results also demonstrate that, when SS is spread within columns, the system over-strength increases by 30% with respect to the carbon–steel benchmark structure. The design over-strength, plastic redistribution and energy dissipation capacity increase by the same amount.
Seismic retrofitting of framed structures with stainless steel
AbstractThe appropriate use of special metals such as stainless steels (SSs) for structural applications in building systems provides possibilities for a more efficient balance between whole-life costs and in-service performance. The present paper assesses the feasibility of the application of SSs for seismic retrofitting of framed structures, either braced (CBFs) or moment resisting (MRFs) frames. In so doing, inelastic analyses have been carried out on a set of multi-storey CBFs and MRFs. The results of both inelastic static (pushovers) and dynamic (response history) analyses demonstrate that systems retrofitted with SSs exhibit enhanced plastic deformations and excellent energy absorbing capacity. The augmented strain hardening of SS is beneficial in preventing local buckling in steel members in both MRFs and CBFs. The analytical results also demonstrate that, when SS is spread within columns, the system over-strength increases by 30% with respect to the carbon–steel benchmark structure. The design over-strength, plastic redistribution and energy dissipation capacity increase by the same amount.
Seismic retrofitting of framed structures with stainless steel
Di Sarno, L. (Autor:in) / Elnashai, A.S. (Autor:in) / Nethercot, D.A. (Autor:in)
Journal of Constructional Steel Research ; 62 ; 93-104
05.05.2005
12 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Seismic retrofitting of framed structures with stainless steel
British Library Conference Proceedings | 2006
|Seismic retrofitting of framed structures with stainless steel
Online Contents | 2006
|SEISMIC RETROFITTING TECHNIQUE OF FRAMED BUILDING BY EXTERNAL STEEL BRACE FRAME
Europäisches Patentamt | 2016
|Seismic retrofitting technique of framed building by external steel brace frame
Europäisches Patentamt | 2016
|