Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
CPT-based probabilistic liquefaction assessment considering soil spatial variability, interpolation uncertainty and model uncertainty
Abstract In engineering practice, simplified procedure based on cone penetration test (CPT) results is widely used for evaluating soil liquefaction potential. Since the CPT-based simplified procedure was developed from observations during past earthquakes, it is semi-empirical and involves significant uncertainty (e.g., model uncertainty). In addition, due to time, budget and access constraints, CPTs are often sparsely conducted at a specific site, leading to a significant uncertainty associated with interpolation of the limited CPT soundings, particularly along horizontal direction. Furthermore, it is well-recognized that spatial variability of soil properties has a remarkable effect on soil liquefaction. All these variability and uncertainties greatly affect the seismic liquefaction assessment results, particularly spatial distribution of liquefiable soils in a site, and liquefaction-induced damage. This underscores a question of how to properly incorporate these variability and uncertainties in liquefaction assessment, e.g., how to characterize spatial distribution of soil liquefaction potential in a site with quantitative consideration of the abovementioned variability and uncertainty. To address this issue, this paper develops a novel probabilistic method for characterizing spatial distribution of soil liquefaction potential through factor of safety, FS against liquefaction in a vertical cross-section using Bayesian compressive sampling and Monte Carlo simulation. Using the proposed method, many random field samples of FS cross-section are obtained directly from limited CPT measurements. The proposed method is illustrated using both a simulated data example and a set of real CPT data from Christchurch, New Zealand. It is shown that the proposed method performs well and provides reasonable liquefaction assessment results.
CPT-based probabilistic liquefaction assessment considering soil spatial variability, interpolation uncertainty and model uncertainty
Abstract In engineering practice, simplified procedure based on cone penetration test (CPT) results is widely used for evaluating soil liquefaction potential. Since the CPT-based simplified procedure was developed from observations during past earthquakes, it is semi-empirical and involves significant uncertainty (e.g., model uncertainty). In addition, due to time, budget and access constraints, CPTs are often sparsely conducted at a specific site, leading to a significant uncertainty associated with interpolation of the limited CPT soundings, particularly along horizontal direction. Furthermore, it is well-recognized that spatial variability of soil properties has a remarkable effect on soil liquefaction. All these variability and uncertainties greatly affect the seismic liquefaction assessment results, particularly spatial distribution of liquefiable soils in a site, and liquefaction-induced damage. This underscores a question of how to properly incorporate these variability and uncertainties in liquefaction assessment, e.g., how to characterize spatial distribution of soil liquefaction potential in a site with quantitative consideration of the abovementioned variability and uncertainty. To address this issue, this paper develops a novel probabilistic method for characterizing spatial distribution of soil liquefaction potential through factor of safety, FS against liquefaction in a vertical cross-section using Bayesian compressive sampling and Monte Carlo simulation. Using the proposed method, many random field samples of FS cross-section are obtained directly from limited CPT measurements. The proposed method is illustrated using both a simulated data example and a set of real CPT data from Christchurch, New Zealand. It is shown that the proposed method performs well and provides reasonable liquefaction assessment results.
CPT-based probabilistic liquefaction assessment considering soil spatial variability, interpolation uncertainty and model uncertainty
Guan, Zheng (Autor:in) / Wang, Yu (Autor:in)
09.10.2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Probabilistic assessment of soil liquefaction considering spatial variability of CPT measurements
Taylor & Francis Verlag | 2017
|Probabilistic assessment of ground motions intensity considering soil properties uncertainty
British Library Online Contents | 2016
|Probabilistic assessment of ground motions intensity considering soil properties uncertainty
Online Contents | 2016
|