Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analytic investigations of CNFP-based self-deicing road system on the deicing performance
Abstract A novel road deicing system consisting of a carbon nano-fiber polymer (CNFP) thermal source, an AlN ceramic insulated encapsulation layer, a multi-wall carbon nanotube (MWCNT)/cement-based thermal conductive layer and a thermal insulated substrate was developed in a previous experimental study. Based on the basic transient heat conduction theory, a mathematical model of composite-media thermal conduction is proposed in this study. Utilizing the orthogonal expansion technique, the non-homogeneous problem is split into the superposition of two steady-state non-homogeneous problems and a homogeneous transient problem; the transient analytic solutions are found in the stage without a phase change. Considering the quasi-steady hypothesis, the other parts of the solutions are determined for the phase change stage. The parameter analyses of the analytic solutions obtained in terms of the time-dependent temperature field reveal the same parameter-dependent influence and curve tendency in the deicing process as in the previous experimental study. To verify the credibility and reliability of the analytic solutions, the results are experimentally confirmed; both the theoretical and experimental approaches present similar trends except for a few slight, acceptable differences. These analytic solutions will be applied for prediction, control and guidance in further deicing studies.
Highlights A theoretical model for CNFP-based self-deicing road system was developed. A mathematical model of composite-media thermal conduction is proposed. The perfect transient analytic solutions of non-homogeneous problem were found. The parameter analysis verified well coincident with experimental study. Analytic solutions will be applied for prediction and guidance in further studies.
Analytic investigations of CNFP-based self-deicing road system on the deicing performance
Abstract A novel road deicing system consisting of a carbon nano-fiber polymer (CNFP) thermal source, an AlN ceramic insulated encapsulation layer, a multi-wall carbon nanotube (MWCNT)/cement-based thermal conductive layer and a thermal insulated substrate was developed in a previous experimental study. Based on the basic transient heat conduction theory, a mathematical model of composite-media thermal conduction is proposed in this study. Utilizing the orthogonal expansion technique, the non-homogeneous problem is split into the superposition of two steady-state non-homogeneous problems and a homogeneous transient problem; the transient analytic solutions are found in the stage without a phase change. Considering the quasi-steady hypothesis, the other parts of the solutions are determined for the phase change stage. The parameter analyses of the analytic solutions obtained in terms of the time-dependent temperature field reveal the same parameter-dependent influence and curve tendency in the deicing process as in the previous experimental study. To verify the credibility and reliability of the analytic solutions, the results are experimentally confirmed; both the theoretical and experimental approaches present similar trends except for a few slight, acceptable differences. These analytic solutions will be applied for prediction, control and guidance in further deicing studies.
Highlights A theoretical model for CNFP-based self-deicing road system was developed. A mathematical model of composite-media thermal conduction is proposed. The perfect transient analytic solutions of non-homogeneous problem were found. The parameter analysis verified well coincident with experimental study. Analytic solutions will be applied for prediction and guidance in further studies.
Analytic investigations of CNFP-based self-deicing road system on the deicing performance
Li, Hui (Autor:in) / Zhang, Qiangqiang (Autor:in) / Xiao, Huigang (Autor:in)
Cold Regions, Science and Technology ; 103 ; 123-132
04.04.2014
10 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Analytic investigations of CNFP-based self-deicing road system on the deicing performance
Online Contents | 2014
|Adjustment mechanism for deicing unit, deicing unit, deicing vehicle and deicing method
Europäisches Patentamt | 2020
|ADJUSTMENT MECHANISM FOR DEICING UNIT, DEICING UNIT, DEICING VEHICLE AND DEICING METHOD
Europäisches Patentamt | 2018
|