Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote arctic locations
Abstract Size-segregated aerosol samples were taken during 2 winter pollution periods and in clean summer air at different remote locations in the European Arctic > 74°N. By means of a newly developed integrating sphere photometer these filter samples have been analysed for aerosol light absorption coefficients and particulate elemental carbon (PEC). The relatively high PEC concentrations in winter confirm other findings about the Arctic winter atmosphere having an aged continental aerosol burden. In summer very low light absorption coefficients of 4.5 × 10−8 m −1 were measured, similar to upper tropospheric background values. For the climatically important months of March-May the key optical aerosol properties (extinction coefficient, single scattering albedo and absorption to backscatter ratio) were determined. Based on the approach of J.M. Mitchell (1971, in Man's Impact on Climate. MIT Press, Cambridge, MA) the Arctic haze aerosol is found to contribute to atmospheric heating, even in the summer. A first PEC size distribution was determined in a clean polar summer air. The results show systematic variations in the PEC size distribution from urban to remote locations and seasonal variations in the sink region which may be exploited to quantify aerosol removal process in long distance transport studies.
Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote arctic locations
Abstract Size-segregated aerosol samples were taken during 2 winter pollution periods and in clean summer air at different remote locations in the European Arctic > 74°N. By means of a newly developed integrating sphere photometer these filter samples have been analysed for aerosol light absorption coefficients and particulate elemental carbon (PEC). The relatively high PEC concentrations in winter confirm other findings about the Arctic winter atmosphere having an aged continental aerosol burden. In summer very low light absorption coefficients of 4.5 × 10−8 m −1 were measured, similar to upper tropospheric background values. For the climatically important months of March-May the key optical aerosol properties (extinction coefficient, single scattering albedo and absorption to backscatter ratio) were determined. Based on the approach of J.M. Mitchell (1971, in Man's Impact on Climate. MIT Press, Cambridge, MA) the Arctic haze aerosol is found to contribute to atmospheric heating, even in the summer. A first PEC size distribution was determined in a clean polar summer air. The results show systematic variations in the PEC size distribution from urban to remote locations and seasonal variations in the sink region which may be exploited to quantify aerosol removal process in long distance transport studies.
Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote arctic locations
Heintzenberg, Jost (Autor:in)
Atmospheric Environment ; 16 ; 2461-2469
02.12.1981
9 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Daily variations of size-segregated ambient particulate matter in Beijing
Online Contents | 2015
|