Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Transit competitiveness in polycentric metropolitan regions
AbstractThis paper analyzes the potential to, and impacts of, increasing transit modal split in a polycentric metropolitan area – the Philadelphia, Pennsylvania region. Potential transit riders are preselected as those travelers whose trips begin and end in areas with transit-supportive land uses, defined as “activity centers,” areas of high-density employment and trip attraction. A multimodal traffic assignment model is developed and solved to quantify the generalized cost of travel by transit services and private automobile under (user) equilibrium conditions. The model predicts transit modal split by identifying the origin–destination pairs for which transit offers lower generalized cost. For those origin–destination pairs for which transit does not offer the lowest generalized cost, I compute a transit competitiveness measure, the ratio of transit generalized cost to auto generalized cost. The model is first formulated and solved for existing transit service and regional pricing schemes. Next, various transit incentives (travel time or fare reductions, increased service) and auto disincentives (higher out of pocket expenses) are proposed and their impacts on individual travel choices and system performance are quantified. The results suggest that a coordinated policy of improved transit service and some auto disincentives is necessary to achieve greater modal split and improved system efficiency in the region. Further, the research finds that two levels of coordinated transit service, between and within activity centers, are necessary to realize the greatest improvements in system performance.
Transit competitiveness in polycentric metropolitan regions
AbstractThis paper analyzes the potential to, and impacts of, increasing transit modal split in a polycentric metropolitan area – the Philadelphia, Pennsylvania region. Potential transit riders are preselected as those travelers whose trips begin and end in areas with transit-supportive land uses, defined as “activity centers,” areas of high-density employment and trip attraction. A multimodal traffic assignment model is developed and solved to quantify the generalized cost of travel by transit services and private automobile under (user) equilibrium conditions. The model predicts transit modal split by identifying the origin–destination pairs for which transit offers lower generalized cost. For those origin–destination pairs for which transit does not offer the lowest generalized cost, I compute a transit competitiveness measure, the ratio of transit generalized cost to auto generalized cost. The model is first formulated and solved for existing transit service and regional pricing schemes. Next, various transit incentives (travel time or fare reductions, increased service) and auto disincentives (higher out of pocket expenses) are proposed and their impacts on individual travel choices and system performance are quantified. The results suggest that a coordinated policy of improved transit service and some auto disincentives is necessary to achieve greater modal split and improved system efficiency in the region. Further, the research finds that two levels of coordinated transit service, between and within activity centers, are necessary to realize the greatest improvements in system performance.
Transit competitiveness in polycentric metropolitan regions
Casello, Jeffrey M. (Autor:in)
Transportation Research Part A: Policy and Practice ; 41 ; 19-40
01.01.2006
22 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Transit competitiveness in polycentric metropolitan regions
Online Contents | 2007
|Understanding metropolitan growth in German polycentric urban regions
Taylor & Francis Verlag | 2022
|Germany’s Polycentric Metropolitan Regions in the World City Network
Online Contents | 2011
|Cross-Border Polycentric Metropolitan Regions : The Case of the Greater Region
BASE | 2011
|