Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Can semi-parametric additive models outperform linear models, when forecasting indoor temperatures in free-running buildings?
Highlights Linear ARX models were compared to semi-parametric GAMs for overheating predictions. Linear ARX models proved to be the most accurate at longer forecasting horizons. GAMs were slightly more accurate at short forecasting horizons (h ≤ 6 h). Linear ARX models provided the most reliable forecasts during heatwaves. Knowledge of the window operation did not improve indoor temperature predictions.
Abstract A novel application combining semi-parametric Generalized Additive Models (GAMs) with logistic GAMs was developed to forecast indoor temperatures and window opening states during prolonged heatwaves. GAM models were compared to AutoRegressive models with eXogenous inputs (ARX) and validated against monitored data from two case study dwellings, located near to Loughborough in the UK, during the 2013 heatwave. Input variables were selected using backward stepwise regressions based on minimisation of the Akaike Information Criterion (AIC) and Mean Absolute Error (MAE), for the ARX and GAM models respectively. Comparison of the models showed that whilst GAMs are capable of improving the forecasting accuracy, the improvements are significant only up to 3–6 h ahead. During heatwaves and over longer forecasting horizons, GAMs were found to be less reliable and accurate than ARX models. The marginal improvement in forecasting accuracy at shorter horizons did not justify the additional computational time and risk of instability associated with more complex GAMs, at longer forecasting horizons. Whilst, logistic GAMs were shown to adequately predict the window opening state, incorporating knowledge of the window state did not significantly improve the accuracy of the indoor temperature predictions.
Can semi-parametric additive models outperform linear models, when forecasting indoor temperatures in free-running buildings?
Highlights Linear ARX models were compared to semi-parametric GAMs for overheating predictions. Linear ARX models proved to be the most accurate at longer forecasting horizons. GAMs were slightly more accurate at short forecasting horizons (h ≤ 6 h). Linear ARX models provided the most reliable forecasts during heatwaves. Knowledge of the window operation did not improve indoor temperature predictions.
Abstract A novel application combining semi-parametric Generalized Additive Models (GAMs) with logistic GAMs was developed to forecast indoor temperatures and window opening states during prolonged heatwaves. GAM models were compared to AutoRegressive models with eXogenous inputs (ARX) and validated against monitored data from two case study dwellings, located near to Loughborough in the UK, during the 2013 heatwave. Input variables were selected using backward stepwise regressions based on minimisation of the Akaike Information Criterion (AIC) and Mean Absolute Error (MAE), for the ARX and GAM models respectively. Comparison of the models showed that whilst GAMs are capable of improving the forecasting accuracy, the improvements are significant only up to 3–6 h ahead. During heatwaves and over longer forecasting horizons, GAMs were found to be less reliable and accurate than ARX models. The marginal improvement in forecasting accuracy at shorter horizons did not justify the additional computational time and risk of instability associated with more complex GAMs, at longer forecasting horizons. Whilst, logistic GAMs were shown to adequately predict the window opening state, incorporating knowledge of the window state did not significantly improve the accuracy of the indoor temperature predictions.
Can semi-parametric additive models outperform linear models, when forecasting indoor temperatures in free-running buildings?
Gustin, Matej (Autor:in) / McLeod, Robert S. (Autor:in) / Lomas, Kevin J. (Autor:in)
Energy and Buildings ; 193 ; 250-266
26.03.2019
17 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Forecasting indoor temperatures during heatwaves using time series models
British Library Online Contents | 2018
|Forecasting indoor temperatures during heatwaves using time series models
British Library Online Contents | 2018
|Forecasting indoor temperatures during heatwaves using time series models
British Library Online Contents | 2018
|Forecasting indoor temperatures during heatwaves using time series models
British Library Online Contents | 2018
|