Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Development of pavement roughness regression models based on smartphone measurements
The purpose of this paper was to study the possibility of using smartphone roughness measurements for developing pavement roughness regression models as a function of pavement age, traffic loading and traffic volume variables. Also, the effects of patching and pavement distresses on pavement roughness were investigated. The work focused on establishing pavement roughness prediction models and applying these models to pavement management systems (PMS) to help decision-makers choose the best maintenance and rehabilitation (M&R) options by using cost-effective methods.
Signal processing techniques including filtering and processing techniques were used to obtain the International Roughness Index (IRI) from raw acceleration data collected from smartphone accelerometer sensors. The obtained IRI values were inputted as a dependent variable in analytical regression models as well as several independent variables with proper transformations.
According to the study results, several regression models were developed with a big variation in the coefficients of determination (R2). However, the best models included pavement age, accumulated traffic volume (∑TV) and construction quality factor (CQF) with R2 equal to 0.63. It was also found that the effects of pavement distresses and patching was significant at a-level < 0.05. The patching effect on pavement roughness was found higher than the effect of other pavement distresses.
The presented results and methods in this paper could be used in the future predictions of pavement roughness and help the decision-makers to estimate M&R needs. The work focused on establishing IRI prediction models and applying these models to the PMS to help decision-makers choose the best M & R options.
To develop sound pavement roughness models, it is essential to collect roughness data using automated procedures. However, applying these procedures in developing countries faces several difficulties such as the high price and operation costs of roughness equipment and lack of technical experience. The advantage of using IRI values taken from smartphones is that the roughness evaluation survey may be expanded to cover the full road network at a cheaper cost than with automated instruments. Therefore, if the roughness survey covers more roads, the prediction model’s accuracy will be improved.
Development of pavement roughness regression models based on smartphone measurements
The purpose of this paper was to study the possibility of using smartphone roughness measurements for developing pavement roughness regression models as a function of pavement age, traffic loading and traffic volume variables. Also, the effects of patching and pavement distresses on pavement roughness were investigated. The work focused on establishing pavement roughness prediction models and applying these models to pavement management systems (PMS) to help decision-makers choose the best maintenance and rehabilitation (M&R) options by using cost-effective methods.
Signal processing techniques including filtering and processing techniques were used to obtain the International Roughness Index (IRI) from raw acceleration data collected from smartphone accelerometer sensors. The obtained IRI values were inputted as a dependent variable in analytical regression models as well as several independent variables with proper transformations.
According to the study results, several regression models were developed with a big variation in the coefficients of determination (R2). However, the best models included pavement age, accumulated traffic volume (∑TV) and construction quality factor (CQF) with R2 equal to 0.63. It was also found that the effects of pavement distresses and patching was significant at a-level < 0.05. The patching effect on pavement roughness was found higher than the effect of other pavement distresses.
The presented results and methods in this paper could be used in the future predictions of pavement roughness and help the decision-makers to estimate M&R needs. The work focused on establishing IRI prediction models and applying these models to the PMS to help decision-makers choose the best M & R options.
To develop sound pavement roughness models, it is essential to collect roughness data using automated procedures. However, applying these procedures in developing countries faces several difficulties such as the high price and operation costs of roughness equipment and lack of technical experience. The advantage of using IRI values taken from smartphones is that the roughness evaluation survey may be expanded to cover the full road network at a cheaper cost than with automated instruments. Therefore, if the roughness survey covers more roads, the prediction model’s accuracy will be improved.
Development of pavement roughness regression models based on smartphone measurements
Al-Suleiman (Obaidat), Turki I. (Autor:in) / Alatoom, Yazan Ibrahim (Autor:in)
Journal of Engineering, Design and Technology ; 22 ; 1136-1157
14.06.2024
22 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Measurement of Pavement Roughness Using Android-Based Smartphone Application
British Library Online Contents | 2014
|Influence of surface distresses on smartphone-based pavement roughness evaluation
Taylor & Francis Verlag | 2021
|Applicability of smartphone-based roughness data for rural road pavement condition evaluation
Taylor & Francis Verlag | 2022
|Verification of Network-Level Pavement Roughness Measurements
British Library Online Contents | 2001
|