Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Forecasting construction output: a comparison of artificial neural network and Box-Jenkins model
– Fluctuations in construction output has an adverse effect on the construction industry and the economy due to its strong linkage. Developing reliable and accurate predictive models is vital to implementing effective response strategies to mitigate the impact of such fluctuations. The purpose of this paper is to compare the accuracy of two univariate forecast models, i.e. Box-Jenkins (autoregressive integrated moving average (ARIMA)) and Neural Network Autoregressive (NNAR).
– Four quarterly time-series data on the construction output of Hong Kong were collected (1983Q1-2014Q4). The collected data were divided into two parts. The first part was fitted to the model, while the other was used to evaluate the predictive accuracy of the developed models.
– The NNAR model can provide reliable and accurate forecast of total, private and “others” construction output for the medium term. In addition, the NNAR model outperforms the ARIMA model, in terms of accuracy.
– The applicability of the NNAR model to the construction industry of other countries could be further explored. The main limitation of artificial intelligence models is the lack of explanatory capability.
– The NNAR model could be used as a tool for accurately predicting future patterns in construction output. This is vital for the sustained growth of the construction industry and the economy.
– This is the first study to apply the NNAR model to construction output forecasting research.
Forecasting construction output: a comparison of artificial neural network and Box-Jenkins model
– Fluctuations in construction output has an adverse effect on the construction industry and the economy due to its strong linkage. Developing reliable and accurate predictive models is vital to implementing effective response strategies to mitigate the impact of such fluctuations. The purpose of this paper is to compare the accuracy of two univariate forecast models, i.e. Box-Jenkins (autoregressive integrated moving average (ARIMA)) and Neural Network Autoregressive (NNAR).
– Four quarterly time-series data on the construction output of Hong Kong were collected (1983Q1-2014Q4). The collected data were divided into two parts. The first part was fitted to the model, while the other was used to evaluate the predictive accuracy of the developed models.
– The NNAR model can provide reliable and accurate forecast of total, private and “others” construction output for the medium term. In addition, the NNAR model outperforms the ARIMA model, in terms of accuracy.
– The applicability of the NNAR model to the construction industry of other countries could be further explored. The main limitation of artificial intelligence models is the lack of explanatory capability.
– The NNAR model could be used as a tool for accurately predicting future patterns in construction output. This is vital for the sustained growth of the construction industry and the economy.
– This is the first study to apply the NNAR model to construction output forecasting research.
Forecasting construction output: a comparison of artificial neural network and Box-Jenkins model
Lam, Ka Chi (Autor:in) / Oshodi, Olalekan Shamsideen (Autor:in)
Engineering, Construction and Architectural Management ; 23 ; 302-322
16.05.2016
21 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Forecasting construction output: a comparison of artificial neural network and Box-Jenkins model
Online Contents | 2016
|DOAJ | 2017
|Automated Box–Jenkins forecasting modelling
Online Contents | 2009
|Automated Box–Jenkins forecasting modelling
British Library Online Contents | 2009
|Taylor & Francis Verlag | 2010
|