Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Project portfolio risk analysis with the consideration of project interdependencies
Comprehensive project portfolio risk (PPR) analysis is essential for the success and sustainable development of project portfolios (PPs). However, project interdependency creates complexity for PPR analysis. In this study, considering the interdependency effect among projects, the authors develop a quantitative evaluation model to analyze PPR based on a fuzzy Bayesian network.
In this paper, the primary purpose is to comprehensively evaluate project portfolio risk considering the interdependency effect using a systematical model. Accordingly, a fuzzy Bayesian network (FBN) is developed based on the existing studies. Specifically, first, the risks in project portfolios are identified from the project interdependencies perspective. Second, a fuzzy Bayesian network is adopted to model and quantify the interaction relationships among risks. Finally, the model is implemented to analyze the occurrence situation and characteristics of risks.
The interdependency effect can lead to high-stake risks, including weak financial liquidity, a lack of cross-project members and project priority imbalance. Furthermore, project schedule risks and inconsistency between product supply and market demand are relatively sensitive and should also be prioritized. Also, the validity of this risk evaluation model has been proved.
The findings identify the most sensitive risks for guaranteeing portfolio implementation and reveal interdependency effect can trigger some specific risks more often. This study proposes for the first time to measure and analyze project portfolio risk by a systematical model. It can help systematically assess and manage the complicated and interdependent risks associated with project portfolios.
Project portfolio risk analysis with the consideration of project interdependencies
Comprehensive project portfolio risk (PPR) analysis is essential for the success and sustainable development of project portfolios (PPs). However, project interdependency creates complexity for PPR analysis. In this study, considering the interdependency effect among projects, the authors develop a quantitative evaluation model to analyze PPR based on a fuzzy Bayesian network.
In this paper, the primary purpose is to comprehensively evaluate project portfolio risk considering the interdependency effect using a systematical model. Accordingly, a fuzzy Bayesian network (FBN) is developed based on the existing studies. Specifically, first, the risks in project portfolios are identified from the project interdependencies perspective. Second, a fuzzy Bayesian network is adopted to model and quantify the interaction relationships among risks. Finally, the model is implemented to analyze the occurrence situation and characteristics of risks.
The interdependency effect can lead to high-stake risks, including weak financial liquidity, a lack of cross-project members and project priority imbalance. Furthermore, project schedule risks and inconsistency between product supply and market demand are relatively sensitive and should also be prioritized. Also, the validity of this risk evaluation model has been proved.
The findings identify the most sensitive risks for guaranteeing portfolio implementation and reveal interdependency effect can trigger some specific risks more often. This study proposes for the first time to measure and analyze project portfolio risk by a systematical model. It can help systematically assess and manage the complicated and interdependent risks associated with project portfolios.
Project portfolio risk analysis with the consideration of project interdependencies
Project portfolio risk analysis
Bai, Libiao (Autor:in) / Shi, Huijing (Autor:in) / Kang, Shuyun (Autor:in) / Zhang, Bingbing (Autor:in)
Engineering, Construction and Architectural Management ; 30 ; 647-670
05.11.2021
24 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
British Library Online Contents | 2012
|British Library Online Contents | 2018