Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
How bracing and heating regimes influence the fire performance of composite frames
Unbraced one-bay composite frames are an interesting load-bearing structure for buildings with up to three storeys. However, their fire design is demanding given the lack of simplified design methods. This paper aims to deepen the understanding of the load-bearing behaviour of both unbraced and braced frames when exposed to fire.
In a previous paper, a numerical model for the fire design of these frames was established and validated with good agreement against fire tests. In the current paper, this model was used to compare the typical differences between braced, semi-braced and unbraced composite frames under fire conditions. Further studies addressed the effect of different heating regimes, i.e. partial fire exposure of the columns in the frames and varying location of the ISO standard fire.
Numerical investigations showed that it is necessary to take local failure and deformation limits of the fire-exposed frames into account. On this basis, unbraced composite frames can compete with braced frames as they have to endure less thermal restraints than braced frames.
In contrast to other investigations on frames, the numerical model is able to take into account the shear failure, which is especially important within the frame corners. Using this model, it is shown that limited sway is reasonable to reduce thermal restraints and hence local stresses. In this regard, the concept of semi-rigid composite joints with a distinct amount of reinforcement has proven to be very rational in fire design.
How bracing and heating regimes influence the fire performance of composite frames
Unbraced one-bay composite frames are an interesting load-bearing structure for buildings with up to three storeys. However, their fire design is demanding given the lack of simplified design methods. This paper aims to deepen the understanding of the load-bearing behaviour of both unbraced and braced frames when exposed to fire.
In a previous paper, a numerical model for the fire design of these frames was established and validated with good agreement against fire tests. In the current paper, this model was used to compare the typical differences between braced, semi-braced and unbraced composite frames under fire conditions. Further studies addressed the effect of different heating regimes, i.e. partial fire exposure of the columns in the frames and varying location of the ISO standard fire.
Numerical investigations showed that it is necessary to take local failure and deformation limits of the fire-exposed frames into account. On this basis, unbraced composite frames can compete with braced frames as they have to endure less thermal restraints than braced frames.
In contrast to other investigations on frames, the numerical model is able to take into account the shear failure, which is especially important within the frame corners. Using this model, it is shown that limited sway is reasonable to reduce thermal restraints and hence local stresses. In this regard, the concept of semi-rigid composite joints with a distinct amount of reinforcement has proven to be very rational in fire design.
How bracing and heating regimes influence the fire performance of composite frames
Bahr, Oliver (Autor:in)
Journal of Structural Fire Engineering ; 12 ; 79-97
23.11.2020
1 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
TIBKAT | 1972
|Wind bracing in structural frames
Engineering Index Backfile | 1929
|Erection Bracing of Structural Steel Frames
British Library Conference Proceedings | 1995
|Erection Bracing of Structural Steel Frames
British Library Conference Proceedings | 1995
|Bracing systems in eccentrically braced frames
British Library Conference Proceedings | 2005
|