Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
SELF HEALING SALT WATER BARRIER
Geocomposite articles that can provide a barrier against high conductivity water e.g., ocean water, are described and their method of manufacture, for waterproofing surfaces that contact high conductivity water. The geocomposite article mat includes a woven or non-woven geotextile sheet or mat containing a powdered or granular partially cross- linked acrylamide/acrylate/acrylic acid copolymer across its entire major surface(s). The powdered or granular copolymer has an unexpectedly high free-swell when hydrated with High Conductivity water, such as ocean water. A liquid-impermeable cover sheet is adhered to the upper major surfaces of the filled copolymer-carrying geotextile to provide a primary high conductivity water barrier layer that, if ruptured, is sealed by the swell of an underlying layer of water-insoluble, partially cross-linked acrylamide/acrylic acid copolymer.
SELF HEALING SALT WATER BARRIER
Geocomposite articles that can provide a barrier against high conductivity water e.g., ocean water, are described and their method of manufacture, for waterproofing surfaces that contact high conductivity water. The geocomposite article mat includes a woven or non-woven geotextile sheet or mat containing a powdered or granular partially cross- linked acrylamide/acrylate/acrylic acid copolymer across its entire major surface(s). The powdered or granular copolymer has an unexpectedly high free-swell when hydrated with High Conductivity water, such as ocean water. A liquid-impermeable cover sheet is adhered to the upper major surfaces of the filled copolymer-carrying geotextile to provide a primary high conductivity water barrier layer that, if ruptured, is sealed by the swell of an underlying layer of water-insoluble, partially cross-linked acrylamide/acrylic acid copolymer.
SELF HEALING SALT WATER BARRIER
BARRIERE AUTOCICATRISANTE CONTRE L'EAU DE MER
DONOVAN MICHAEL (Autor:in) / BEIHOFFER THOMAS W (Autor:in) / LARIONOVA NATALIYA V (Autor:in) / MOSIEWICZ MAREK R (Autor:in)
07.05.2019
Patent
Elektronische Ressource
Englisch