Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Ultrahigh-temperature antioxidant nano composite ceramic
The invention relates to the technical field of ceramic production, in particular to ultrahigh-temperature antioxidant nano composite ceramic. The composite ceramic comprises the following raw materials in parts by weight: 15-25 parts of phenolic resin, 17-23 parts of diboron trioxide, 34-46 parts of silicon dioxide, 17-23 parts of zirconium dioxide, 10-15 parts of boron nitride, 10-15 parts of aluminum nitride, 20-30 parts of absolute ethyl alcohol, 80-100 parts of organic silane, 0.6-0.9 part of a sintering aid, 0.7-0.9 part of polyethylene glycol, 0.8-1.2 parts of a modified blank enhancer and 0.7-0.9 part of a scratch-resistant agent. The preparation method comprises the following steps: S1, weighing raw materials, ball-milling and mixing boron nitride, aluminum nitride, absolute ethyl alcohol and organic silane for 4-6 hours to obtain ball-milled slurry; according to the invention, the compressive strength of the ceramic can be effectively improved, and the scratch resistance of the ceramic is also enhanced.
本发明涉及陶瓷生产技术领域,尤其涉及一种超高温抗氧化纳米复合陶瓷,该复合陶瓷按重量份计包括以下原料:酚醛树脂15~25份、三氧化二硼17~23份、二氧化硅34~46份、二氧化锆17~23份、氮化硼10~15份、氮化铝10~15份、无水乙醇20~30份、有机硅烷80~100份、烧结助剂0.6~0.9份、聚乙二醇0.7~0.9份、改性胚体增强剂0.8~1.2份和抗划伤剂0.7~0.9份,且其制备方法包括以下步骤:S1、按量称取原料,并将氮化硼、氮化铝、无水乙醇和有机硅烷球磨混合4~6h,得球磨浆料。本发明不仅能够有效地提高陶瓷的抗压强度,而且还能改善陶瓷的耐划伤性能。
Ultrahigh-temperature antioxidant nano composite ceramic
The invention relates to the technical field of ceramic production, in particular to ultrahigh-temperature antioxidant nano composite ceramic. The composite ceramic comprises the following raw materials in parts by weight: 15-25 parts of phenolic resin, 17-23 parts of diboron trioxide, 34-46 parts of silicon dioxide, 17-23 parts of zirconium dioxide, 10-15 parts of boron nitride, 10-15 parts of aluminum nitride, 20-30 parts of absolute ethyl alcohol, 80-100 parts of organic silane, 0.6-0.9 part of a sintering aid, 0.7-0.9 part of polyethylene glycol, 0.8-1.2 parts of a modified blank enhancer and 0.7-0.9 part of a scratch-resistant agent. The preparation method comprises the following steps: S1, weighing raw materials, ball-milling and mixing boron nitride, aluminum nitride, absolute ethyl alcohol and organic silane for 4-6 hours to obtain ball-milled slurry; according to the invention, the compressive strength of the ceramic can be effectively improved, and the scratch resistance of the ceramic is also enhanced.
本发明涉及陶瓷生产技术领域,尤其涉及一种超高温抗氧化纳米复合陶瓷,该复合陶瓷按重量份计包括以下原料:酚醛树脂15~25份、三氧化二硼17~23份、二氧化硅34~46份、二氧化锆17~23份、氮化硼10~15份、氮化铝10~15份、无水乙醇20~30份、有机硅烷80~100份、烧结助剂0.6~0.9份、聚乙二醇0.7~0.9份、改性胚体增强剂0.8~1.2份和抗划伤剂0.7~0.9份,且其制备方法包括以下步骤:S1、按量称取原料,并将氮化硼、氮化铝、无水乙醇和有机硅烷球磨混合4~6h,得球磨浆料。本发明不仅能够有效地提高陶瓷的抗压强度,而且还能改善陶瓷的耐划伤性能。
Ultrahigh-temperature antioxidant nano composite ceramic
一种超高温抗氧化纳米复合陶瓷
QU YUAN (Autor:in) / LIU TING (Autor:in) / ZUO XIAOHUA (Autor:in) / LI XINGZE (Autor:in) / YANG HONGCHUN (Autor:in) / FENG WEI (Autor:in) / CHEN YUE (Autor:in) / ZHANG QING (Autor:in)
16.04.2021
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
Ultrahigh-temperature ceramic densification method and ultrahigh-temperature ceramic
Europäisches Patentamt | 2022
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2024
|Preparation method of ultrahigh-temperature ceramic composite powder
Europäisches Patentamt | 2022
|Ultrahigh-temperature ceramic composite material and preparation method
Europäisches Patentamt | 2020
|