Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Preparation method of 1.28% large-electrostrictive-strain lead-free potassium sodium niobate-based piezoelectric ceramic
The invention relates to a preparation method of 1.28% large-electrostrictive-strain lead-free potassium sodium niobate-based piezoelectric ceramic, used potassium sodium niobate ceramics have submicron crystal grains, rich phase change and large piezoelectric activity, and lanthanum doping can miniaturize domains and influence the piezoelectric response of the potassium sodium niobate ceramics. Various parameters of the preparation process are optimized to refine crystal grains; the performance table of the lead-free piezoelectric ceramic obtained after sintering is as follows: the maximum polarization intensity under the electric field of 40kV/cm is 19 [mu] C/cm < 2 >, the remanent polarization intensity is 10 [mu] C/cm < 2 >, and the coercive field is 12kV/cm; the bipolar electrostrictive strain under a 40 kV/cm electric field can reach 0.98%, and the inverse piezoelectric coefficient is 2363 pm/V; and the monopole electrostrictive strain under the electric field of 110 kV/cm can reach 1.28%, and the inverse piezoelectric coefficient is 1167 pm/V. The lead-free potassium-sodium niobate-based ceramic obtained by sintering has 1.28% of giant electrostrictive strain, which is the maximum value of the polycrystalline lead-free piezoelectric ceramic researched at present, and has a very great application prospect.
本发明涉及一种1.28%的大电致应变无铅铌酸钾钠基压电陶瓷的制备方法,使用的铌酸钾钠陶瓷具有亚微米级的晶粒、丰富的相变以及大的压电活性,而镧的掺杂可以使畴微型化并影响铌酸钾钠陶瓷的压电响应,优化制备工艺的各项参数来细化晶粒,烧结后得到的无铅压电陶瓷的性能表为:在40kV/cm电场下的最大极化强度为19μC/cm2,剩余极化强度为10μC/cm2,矫顽场为12kV/cm;在40kV/cm电场下的双极电致应变可达0.98%,逆压电系数为2363pm/V;在110kV/cm电场下的单极电致应变可达1.28%,逆压电系数为1167pm/V。烧结得到的无铅铌酸钾钠基陶瓷具有1.28%的巨电致应变,为目前研究的多晶无铅压电陶瓷的最大值,具有非常大的应用前景。
Preparation method of 1.28% large-electrostrictive-strain lead-free potassium sodium niobate-based piezoelectric ceramic
The invention relates to a preparation method of 1.28% large-electrostrictive-strain lead-free potassium sodium niobate-based piezoelectric ceramic, used potassium sodium niobate ceramics have submicron crystal grains, rich phase change and large piezoelectric activity, and lanthanum doping can miniaturize domains and influence the piezoelectric response of the potassium sodium niobate ceramics. Various parameters of the preparation process are optimized to refine crystal grains; the performance table of the lead-free piezoelectric ceramic obtained after sintering is as follows: the maximum polarization intensity under the electric field of 40kV/cm is 19 [mu] C/cm < 2 >, the remanent polarization intensity is 10 [mu] C/cm < 2 >, and the coercive field is 12kV/cm; the bipolar electrostrictive strain under a 40 kV/cm electric field can reach 0.98%, and the inverse piezoelectric coefficient is 2363 pm/V; and the monopole electrostrictive strain under the electric field of 110 kV/cm can reach 1.28%, and the inverse piezoelectric coefficient is 1167 pm/V. The lead-free potassium-sodium niobate-based ceramic obtained by sintering has 1.28% of giant electrostrictive strain, which is the maximum value of the polycrystalline lead-free piezoelectric ceramic researched at present, and has a very great application prospect.
本发明涉及一种1.28%的大电致应变无铅铌酸钾钠基压电陶瓷的制备方法,使用的铌酸钾钠陶瓷具有亚微米级的晶粒、丰富的相变以及大的压电活性,而镧的掺杂可以使畴微型化并影响铌酸钾钠陶瓷的压电响应,优化制备工艺的各项参数来细化晶粒,烧结后得到的无铅压电陶瓷的性能表为:在40kV/cm电场下的最大极化强度为19μC/cm2,剩余极化强度为10μC/cm2,矫顽场为12kV/cm;在40kV/cm电场下的双极电致应变可达0.98%,逆压电系数为2363pm/V;在110kV/cm电场下的单极电致应变可达1.28%,逆压电系数为1167pm/V。烧结得到的无铅铌酸钾钠基陶瓷具有1.28%的巨电致应变,为目前研究的多晶无铅压电陶瓷的最大值,具有非常大的应用前景。
Preparation method of 1.28% large-electrostrictive-strain lead-free potassium sodium niobate-based piezoelectric ceramic
一种1.28%的大电致应变无铅铌酸钾钠基压电陶瓷的制备方法
FAN HUIQING (Autor:in) / QUAN QIFENG (Autor:in) / WANG WEIJIA (Autor:in)
01.06.2021
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
Preparation method of potassium-sodium-niobate-based lead-free piezoelectric ceramic
Europäisches Patentamt | 2022
|Europäisches Patentamt | 2020
|Europäisches Patentamt | 2023
|Europäisches Patentamt | 2015
|Europäisches Patentamt | 2023
|