Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Silicon carbide ceramic wave-absorbing pyramid based on 3D printing and preparation method thereof
The invention discloses a silicon carbide ceramic wave-absorbing pyramid based on 3D printing and a preparation method of the silicon carbide ceramic wave-absorbing pyramid based on 3D printing, silicon carbide wave-absorbing mixed powder and a polymer binder are moderately blended according to the weight percentage, and in the preparation method, a ball mill, a constant-temperature drying box and a vibrating screen are used for obtaining 3D printing powder; and carrying out laser sintering, slicing the wave-absorbing pyramid to form a ceramic green body, and finally obtaining the silicon carbide ceramic wave-absorbing pyramid. The wide-frequency-band high-power high-flame-retardancy high-frequency-band high-absorption high-power high-flame-retardancy high-cleanliness microwave dielectric ceramic has the advantages of being wide in frequency band, high in absorption, high in high-temperature resistance, high in power, high in flame retardancy and high in cleanliness, restrictions of mold forming are The product is suitable for personalized, diversified and customized batch production, a complex hollow structure product can be produced, the development efficiency is high, and great economic value is achieved.
本发明公开了一种基于3D打印的碳化硅陶瓷吸波角锥及其制备方法,碳化硅吸波混合粉末和高分子粘结剂,碳化硅吸波混合粉末和高分子粘结剂按照重量百分比进行适度调配,制备方法中利用球磨机、恒温干燥箱和振动筛得到3D打印粉料,进行激光烧结、吸波角锥切片,形成陶瓷坯体,最终获得碳化硅陶瓷吸波角锥。本发明具有宽频段、高吸收、耐高温、高功率,高阻燃、高洁净的特点,摆脱了模具成型的制约,提高了生产效率,节省了一定的成本;产品适应个性化、多样化、定制化的批量生产,更能生产出复杂的中空结构产品,开发效率高,具有很大的经济价值。
Silicon carbide ceramic wave-absorbing pyramid based on 3D printing and preparation method thereof
The invention discloses a silicon carbide ceramic wave-absorbing pyramid based on 3D printing and a preparation method of the silicon carbide ceramic wave-absorbing pyramid based on 3D printing, silicon carbide wave-absorbing mixed powder and a polymer binder are moderately blended according to the weight percentage, and in the preparation method, a ball mill, a constant-temperature drying box and a vibrating screen are used for obtaining 3D printing powder; and carrying out laser sintering, slicing the wave-absorbing pyramid to form a ceramic green body, and finally obtaining the silicon carbide ceramic wave-absorbing pyramid. The wide-frequency-band high-power high-flame-retardancy high-frequency-band high-absorption high-power high-flame-retardancy high-cleanliness microwave dielectric ceramic has the advantages of being wide in frequency band, high in absorption, high in high-temperature resistance, high in power, high in flame retardancy and high in cleanliness, restrictions of mold forming are The product is suitable for personalized, diversified and customized batch production, a complex hollow structure product can be produced, the development efficiency is high, and great economic value is achieved.
本发明公开了一种基于3D打印的碳化硅陶瓷吸波角锥及其制备方法,碳化硅吸波混合粉末和高分子粘结剂,碳化硅吸波混合粉末和高分子粘结剂按照重量百分比进行适度调配,制备方法中利用球磨机、恒温干燥箱和振动筛得到3D打印粉料,进行激光烧结、吸波角锥切片,形成陶瓷坯体,最终获得碳化硅陶瓷吸波角锥。本发明具有宽频段、高吸收、耐高温、高功率,高阻燃、高洁净的特点,摆脱了模具成型的制约,提高了生产效率,节省了一定的成本;产品适应个性化、多样化、定制化的批量生产,更能生产出复杂的中空结构产品,开发效率高,具有很大的经济价值。
Silicon carbide ceramic wave-absorbing pyramid based on 3D printing and preparation method thereof
一种基于3D打印的碳化硅陶瓷吸波角锥及其制备方法
HE SHAN (Autor:in) / LI JIAYU (Autor:in) / HUA XIAOJUN (Autor:in)
12.04.2022
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
/
B28B
Formgeben von Ton oder anderen keramischen Stoffzusammensetzungen, Schlacke oder von Mischungen, die zementartiges Material enthalten, z.B. Putzmörtel
,
SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS, SLAG OR MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
Europäisches Patentamt | 2022
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2023
|Europäisches Patentamt | 2023
|