Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Preparation method of near-zero expansion Al-ZrW2O8 composite material
A preparation method of a near-zero-expansion Al-ZrW2O8 composite material comprises the steps that firstly, a ZrW2O8 micro-truss structure is prepared through a 3D ink-jet printing method, and a precursor of the ZrW2O8 micro-truss printing structure is a stable rheological body prepared from ZrW2O8 particles with the particle size range being 10-500 microns and a water-based or organic matter-based solution; the printed ZrW2O8 micro-truss is sintered in an air environment of 450-700 DEG C to obtain a ZrW2O8 skeleton structure, and the porosity of the skeleton structure is controlled to be 28-32%; and then aluminum or aluminum alloy melt is infiltrated into the ZrW2O8 framework within the temperature range of 400-750 DEG C, the Al-ZrW2O8 composite material of the ZrW2O8 framework structure is obtained, and the thermal expansion coefficient of the composite material within the temperature range of-100-100 DEG C is (-0.5-0.5) * 10 <-6 > K <-1 >.
一种近零膨胀Al‑ZrW2O8复合材料的制备方法,首先采用3D喷墨打印方法制备ZrW2O8微桁架结构,ZrW2O8微桁架打印结构的前驱体为粒度范围为10‑500μm的ZrW2O8颗粒与水基或有机物基溶液配置形成的稳定流变体;打印出的ZrW2O8微桁架在450‑700℃的空气环境中烧结获得ZrW2O8骨架结构,骨架结构的孔隙率控制为28‑32%;之后将铝或铝合金熔液在400‑750℃的温度范围内渗入ZrW2O8骨架,获得ZrW2O8骨架结构的Al‑ZrW2O8复合材料,复合材料在‑100~100℃温度范围内的热膨胀系数为(‑0.5~0.5)×10‑6K‑1。
Preparation method of near-zero expansion Al-ZrW2O8 composite material
A preparation method of a near-zero-expansion Al-ZrW2O8 composite material comprises the steps that firstly, a ZrW2O8 micro-truss structure is prepared through a 3D ink-jet printing method, and a precursor of the ZrW2O8 micro-truss printing structure is a stable rheological body prepared from ZrW2O8 particles with the particle size range being 10-500 microns and a water-based or organic matter-based solution; the printed ZrW2O8 micro-truss is sintered in an air environment of 450-700 DEG C to obtain a ZrW2O8 skeleton structure, and the porosity of the skeleton structure is controlled to be 28-32%; and then aluminum or aluminum alloy melt is infiltrated into the ZrW2O8 framework within the temperature range of 400-750 DEG C, the Al-ZrW2O8 composite material of the ZrW2O8 framework structure is obtained, and the thermal expansion coefficient of the composite material within the temperature range of-100-100 DEG C is (-0.5-0.5) * 10 <-6 > K <-1 >.
一种近零膨胀Al‑ZrW2O8复合材料的制备方法,首先采用3D喷墨打印方法制备ZrW2O8微桁架结构,ZrW2O8微桁架打印结构的前驱体为粒度范围为10‑500μm的ZrW2O8颗粒与水基或有机物基溶液配置形成的稳定流变体;打印出的ZrW2O8微桁架在450‑700℃的空气环境中烧结获得ZrW2O8骨架结构,骨架结构的孔隙率控制为28‑32%;之后将铝或铝合金熔液在400‑750℃的温度范围内渗入ZrW2O8骨架,获得ZrW2O8骨架结构的Al‑ZrW2O8复合材料,复合材料在‑100~100℃温度范围内的热膨胀系数为(‑0.5~0.5)×10‑6K‑1。
Preparation method of near-zero expansion Al-ZrW2O8 composite material
一种近零膨胀Al-ZrW2O8复合材料的制备方法
WANG YONGDI (Autor:in)
04.10.2022
Patent
Elektronische Ressource
Chinesisch
IPC:
B22D
CASTING OF METALS
,
Gießen von Metallen
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
/
C04B
Kalk
,
LIME
British Library Online Contents | 2008
|Synthesis and thermal expansion of 4J36/ZrW2O8 composites
British Library Online Contents | 2010
|British Library Online Contents | 2014
|Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion
British Library Online Contents | 2007
|Pressureless sintering of negative thermal expansion ZrW2O8/Zr2WP2O12 composites
British Library Online Contents | 2008
|