Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
High-temperature molten salt corrosion resistant ceramic-based composite material and preparation method and application thereof
The invention discloses a preparation method of a high-temperature molten salt corrosion resistant ceramic-based composite material, and relates to the technical field of ceramic-based composite materials. The composite material takes silicon carbide as a matrix, boron carbide as a second phase and a small amount of aluminum oxide and yttrium oxide as sintering aids, and comprises the following components in percentage by mass: 0-40% of boron carbide powder, 4-7% of aluminum oxide powder, 3-6% of yttrium oxide powder and 50-90% of silicon carbide powder. Uniformly mixing the boron carbide powder, the silicon carbide powder, the aluminum oxide powder and the yttrium oxide powder, and sintering at 1800-1900 DEG C to form the silicon carbide-based composite ceramic material resistant to high-temperature molten salt corrosion, the Gibbs free enthalpy of the reaction of the selected boron carbide and the molten salt at the set temperature is more negative than the Gibbs free enthalpy of the reaction of the silicon carbide and the molten salt at the set temperature. The preparation process is simple, and various mechanical properties and molten salt corrosion resistance of the composite material are improved.
本发明公开了一种耐高温熔盐腐蚀陶瓷基复合材料的制备方法,涉及陶瓷基复合材料技术领域。本复合材料以碳化硅为基体,碳化硼作为第二相,少量的氧化铝和氧化钇作为烧结助剂,包括质量分数为0‑40%的碳化硼粉末,质量分数为4‑7%的氧化铝粉末和质量分数为3‑6%的氧化钇粉末,质量分数为50‑90%的碳化硅粉末;碳化硼粉末、碳化硅粉末、氧化铝粉末和氧化钇粉末混合均匀后在1800‑1900℃下进行烧结,形成耐高温熔盐腐蚀的碳化硅基复合陶瓷材料;所选的碳化硼与熔融盐在设定温度下反应的吉布斯自由焓比碳化硅与熔融盐在该温度下反应的吉布斯自由焓要更负。其制备工艺简单,本发明的复合材料各项力学性能及耐熔盐腐蚀性能均得到了提高。
High-temperature molten salt corrosion resistant ceramic-based composite material and preparation method and application thereof
The invention discloses a preparation method of a high-temperature molten salt corrosion resistant ceramic-based composite material, and relates to the technical field of ceramic-based composite materials. The composite material takes silicon carbide as a matrix, boron carbide as a second phase and a small amount of aluminum oxide and yttrium oxide as sintering aids, and comprises the following components in percentage by mass: 0-40% of boron carbide powder, 4-7% of aluminum oxide powder, 3-6% of yttrium oxide powder and 50-90% of silicon carbide powder. Uniformly mixing the boron carbide powder, the silicon carbide powder, the aluminum oxide powder and the yttrium oxide powder, and sintering at 1800-1900 DEG C to form the silicon carbide-based composite ceramic material resistant to high-temperature molten salt corrosion, the Gibbs free enthalpy of the reaction of the selected boron carbide and the molten salt at the set temperature is more negative than the Gibbs free enthalpy of the reaction of the silicon carbide and the molten salt at the set temperature. The preparation process is simple, and various mechanical properties and molten salt corrosion resistance of the composite material are improved.
本发明公开了一种耐高温熔盐腐蚀陶瓷基复合材料的制备方法,涉及陶瓷基复合材料技术领域。本复合材料以碳化硅为基体,碳化硼作为第二相,少量的氧化铝和氧化钇作为烧结助剂,包括质量分数为0‑40%的碳化硼粉末,质量分数为4‑7%的氧化铝粉末和质量分数为3‑6%的氧化钇粉末,质量分数为50‑90%的碳化硅粉末;碳化硼粉末、碳化硅粉末、氧化铝粉末和氧化钇粉末混合均匀后在1800‑1900℃下进行烧结,形成耐高温熔盐腐蚀的碳化硅基复合陶瓷材料;所选的碳化硼与熔融盐在设定温度下反应的吉布斯自由焓比碳化硅与熔融盐在该温度下反应的吉布斯自由焓要更负。其制备工艺简单,本发明的复合材料各项力学性能及耐熔盐腐蚀性能均得到了提高。
High-temperature molten salt corrosion resistant ceramic-based composite material and preparation method and application thereof
一种耐高温熔盐腐蚀陶瓷基复合材料及其制备方法和应用
JIA JUNHONG (Autor:in) / WANG KUI (Autor:in) / CHEN WEI (Autor:in) / GUO DONGQING (Autor:in) / JIAO XIAOYU (Autor:in) / WANG JIAN (Autor:in)
23.06.2023
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
High temperature resistant corrosion-resistant ceramic material and preparation method thereof
Europäisches Patentamt | 2015
|High-temperature-resistant ceramic composite material and preparation method thereof
Europäisches Patentamt | 2023
|Europäisches Patentamt | 2021
|Carbon/carbon composite material connection method resisting high-temperature molten salt corrosion
Europäisches Patentamt | 2015
|Europäisches Patentamt | 2021
|