Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
High-entropy carbide ceramic (MoNbTaTiW) C5 and preparation method thereof
The invention belongs to the technical field of metal carbide ceramic materials, and particularly relates to high-entropy carbide ceramic (MoNbTaTiW) C5 and a preparation method thereof. The high-entropy carbide ceramic (MoNbTaTiW) C5 is prepared from transition metal oxide through carbon thermal reduction. According to the invention, micron-sized MoO3, Nb2O5, Ta2O5, TiO2, WO3 and carbon black (C) powder are used as raw materials and are subjected to a carbon thermal reduction reaction, and an SPS sintering process is adopted to prepare the catalyst. The obtained high-entropy carbide ceramic (MoNbTaTiW) C5 is a single phase, the relative density of a face-centered cubic structure is greater than 96%, crystal grains are fine, and metal elements are uniformly distributed; according to the present invention, the alloy material has excellent mechanical properties, and the hardness, the nanometer hardness, the elastic modulus and the fracture toughness of the alloy material are respectively 14-15 GPa, 25-28 GPa, 357-418 GPa and 4.7-5.2 MPa.m < 1/2 >; the thermal conductivity is relatively low, and the thermal conductivity at room temperature is as low as 5.9 W/mK and is lower than that of carbide ceramics corresponding to metal components.
本发明属于金属碳化物陶瓷材料技术领域,具体涉及一种高熵碳化物陶瓷(MoNbTaTiW)C5及其制备方法。本发明采用过渡金属氧化物碳热还原制备高熵碳化物陶瓷(MoNbTaTiW)C5。本发明以微米级MoO3、Nb2O5、Ta2O5、TiO2、WO3和炭黑(C)粉末为原料,通过碳热还原反应,采用SPS烧结工艺制得。所得高熵碳化物陶瓷(MoNbTaTiW)C5为单相、面心立方结构相对密度大于96%,晶粒细小,金属元素分布均匀;具有较优的力学性能,其硬度,纳米硬度,弹性模量,断裂韧性分别为14‑15 GPa,25‑28 GPa,357‑418 GPa和4.7‑5.2 MPa·m1/2;具有较低的热导率,室温热导率低至5.9 W/mK,低于其金属组元对应的碳化物陶瓷。
High-entropy carbide ceramic (MoNbTaTiW) C5 and preparation method thereof
The invention belongs to the technical field of metal carbide ceramic materials, and particularly relates to high-entropy carbide ceramic (MoNbTaTiW) C5 and a preparation method thereof. The high-entropy carbide ceramic (MoNbTaTiW) C5 is prepared from transition metal oxide through carbon thermal reduction. According to the invention, micron-sized MoO3, Nb2O5, Ta2O5, TiO2, WO3 and carbon black (C) powder are used as raw materials and are subjected to a carbon thermal reduction reaction, and an SPS sintering process is adopted to prepare the catalyst. The obtained high-entropy carbide ceramic (MoNbTaTiW) C5 is a single phase, the relative density of a face-centered cubic structure is greater than 96%, crystal grains are fine, and metal elements are uniformly distributed; according to the present invention, the alloy material has excellent mechanical properties, and the hardness, the nanometer hardness, the elastic modulus and the fracture toughness of the alloy material are respectively 14-15 GPa, 25-28 GPa, 357-418 GPa and 4.7-5.2 MPa.m < 1/2 >; the thermal conductivity is relatively low, and the thermal conductivity at room temperature is as low as 5.9 W/mK and is lower than that of carbide ceramics corresponding to metal components.
本发明属于金属碳化物陶瓷材料技术领域,具体涉及一种高熵碳化物陶瓷(MoNbTaTiW)C5及其制备方法。本发明采用过渡金属氧化物碳热还原制备高熵碳化物陶瓷(MoNbTaTiW)C5。本发明以微米级MoO3、Nb2O5、Ta2O5、TiO2、WO3和炭黑(C)粉末为原料,通过碳热还原反应,采用SPS烧结工艺制得。所得高熵碳化物陶瓷(MoNbTaTiW)C5为单相、面心立方结构相对密度大于96%,晶粒细小,金属元素分布均匀;具有较优的力学性能,其硬度,纳米硬度,弹性模量,断裂韧性分别为14‑15 GPa,25‑28 GPa,357‑418 GPa和4.7‑5.2 MPa·m1/2;具有较低的热导率,室温热导率低至5.9 W/mK,低于其金属组元对应的碳化物陶瓷。
High-entropy carbide ceramic (MoNbTaTiW) C5 and preparation method thereof
一种高熵碳化物陶瓷(MoNbTaTiW)C5及其制备方法
HAI WANXIU (Autor:in) / GONG MAOYUAN (Autor:in) / ZHANG SHUBO (Autor:in) / ZHANG HAI (Autor:in) / CHEN YUHONG (Autor:in) / LIU MEILING (Autor:in) / LU YOUJUN (Autor:in)
24.11.2023
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
High-entropy carbide ceramic and preparation method thereof
Europäisches Patentamt | 2024
|Carbide high-entropy ceramic fiber and preparation method thereof
Europäisches Patentamt | 2020
|Carbide high-entropy ceramic precursor, high-entropy ceramic and preparation method
Europäisches Patentamt | 2020
|Europäisches Patentamt | 2023
|Europäisches Patentamt | 2023
|