Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
High-temperature broadband wave-absorbing metamaterial for 3D printing as well as preparation method and application of high-temperature broadband wave-absorbing metamaterial
The invention discloses a high-temperature broadband wave-absorbing metamaterial for 3D printing and a preparation method and application thereof, the high-temperature broadband wave-absorbing metamaterial for 3D printing comprises n * m unit structures arranged in an array, n > = 2, and m > = 2; the unit structure is one of the following four structure types. According to the structure of the high-temperature broadband wave-absorbing metamaterial for 3D printing, taking the ceramic precursor as a raw material, and printing by adopting a 3D printing technology to obtain a ceramic biscuit; and pyrolyzing the ceramic biscuit to obtain the high-temperature broadband wave-absorbing metamaterial. The high-temperature broadband wave-absorbing metamaterial structure for 3D printing can be suitable for improving the high-temperature wave-absorbing performance of 3D printing precursor conversion ceramic, and equivalent dielectric parameters and impedance matching of the ceramic with the intrinsic dielectric real part within the range of 8-50 and the imaginary part within the range of 5-30 can be adjusted through structural parameter optimization. And broadband coverage of an X wave band between 25 DEG C and 700 DEG C can be realized under a single thickness.
一种用于3D打印的高温宽频吸波超材料及其制备方法和应用,其中用于3D打印的高温宽频吸波超材料包括n×m个呈阵列排布的单元结构,n≥2,m≥2;所述单元结构为以下四种结构类型中的一种。按照用于3D打印的高温宽频吸波超材料的结构,以陶瓷前驱体为原料,采用3D打印技术进行打印,得到陶瓷素坯;将陶瓷素坯进行热解,得到高温宽频吸波超材料。本发明的用于3D打印的高温宽频吸波超材料结构可适用于3D打印前驱体转换陶瓷的高温吸波性能提高,本征介电实部在8‑50,虚部在5‑30范围内的陶瓷均可通过结构参数优化调节等效介电参数和阻抗匹配,在单一厚度下可实现25℃到700℃之间X波段的宽频覆盖。
High-temperature broadband wave-absorbing metamaterial for 3D printing as well as preparation method and application of high-temperature broadband wave-absorbing metamaterial
The invention discloses a high-temperature broadband wave-absorbing metamaterial for 3D printing and a preparation method and application thereof, the high-temperature broadband wave-absorbing metamaterial for 3D printing comprises n * m unit structures arranged in an array, n > = 2, and m > = 2; the unit structure is one of the following four structure types. According to the structure of the high-temperature broadband wave-absorbing metamaterial for 3D printing, taking the ceramic precursor as a raw material, and printing by adopting a 3D printing technology to obtain a ceramic biscuit; and pyrolyzing the ceramic biscuit to obtain the high-temperature broadband wave-absorbing metamaterial. The high-temperature broadband wave-absorbing metamaterial structure for 3D printing can be suitable for improving the high-temperature wave-absorbing performance of 3D printing precursor conversion ceramic, and equivalent dielectric parameters and impedance matching of the ceramic with the intrinsic dielectric real part within the range of 8-50 and the imaginary part within the range of 5-30 can be adjusted through structural parameter optimization. And broadband coverage of an X wave band between 25 DEG C and 700 DEG C can be realized under a single thickness.
一种用于3D打印的高温宽频吸波超材料及其制备方法和应用,其中用于3D打印的高温宽频吸波超材料包括n×m个呈阵列排布的单元结构,n≥2,m≥2;所述单元结构为以下四种结构类型中的一种。按照用于3D打印的高温宽频吸波超材料的结构,以陶瓷前驱体为原料,采用3D打印技术进行打印,得到陶瓷素坯;将陶瓷素坯进行热解,得到高温宽频吸波超材料。本发明的用于3D打印的高温宽频吸波超材料结构可适用于3D打印前驱体转换陶瓷的高温吸波性能提高,本征介电实部在8‑50,虚部在5‑30范围内的陶瓷均可通过结构参数优化调节等效介电参数和阻抗匹配,在单一厚度下可实现25℃到700℃之间X波段的宽频覆盖。
High-temperature broadband wave-absorbing metamaterial for 3D printing as well as preparation method and application of high-temperature broadband wave-absorbing metamaterial
一种用于3D打印的高温宽频吸波超材料及其制备方法和应用
XING RUIZHE (Autor:in) / KONG JIE (Autor:in) / LIU YEKUN (Autor:in) / LIU YONGSHENG (Autor:in) / XU GUOXUAN (Autor:in)
25.06.2024
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
Metamaterial-based Broadband Elastic Wave Absorber
British Library Online Contents | 2010
|SiBOC ceramic-based wave-absorbing metamaterial and preparation method thereof
Europäisches Patentamt | 2024
|Metamaterial-based broadband elastic wave absorber
Tema Archiv | 2010
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2022
|