Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
PYROELECTRIC BODY, PYROELECTRIC ELEMENT, MANUFACTURING METHOD OF PYROELECTRIC ELEMENT, THERMOELECTRIC CONVERSION ELEMENT, MANUFACTURING METHOD OF THERMOELECTRIC CONVERSION ELEMENT, THERMAL TYPE PHOTODETECTOR, MANUFACTURING METHOD OF THERMAL TYPE PHOTODETECTOR, AND ELECTRONIC APPARATUS
PROBLEM TO BE SOLVED: To provide a pyroelectric body of which the pyroelectric coefficient (sensitivity) is high.SOLUTION: The pyroelectric body includes an oxide containing iron, manganese, bismuth and neodymium. The oxide has a perovskite crystal structure and a ratio of an atomic number of neodymium with respect to a total sum of atomic numbers of A-site elements is 19.0 atom% or more and 23.0 atom% or less. It is preferable for the oxide that a ratio of an atomic number of manganese with respect to a total sum of atomic numbers of B-site elements is 1.0 atom% or more and 2.0 atom% or less. Further, it is preferable that a ratio of an atomic number of titanium with respect to the total sum of the atomic numbers of the B-site elements is 0 atom% or more and 4.0 atom% or less. It is preferable that the pyroelectric body is used at an environmental temperature of -100°C or lower.SELECTED DRAWING: Figure 2
【課題】焦電係数(感度)の高い焦電体を提供する。【解決手段】焦電体は、鉄、マンガン、ビスマス及びネオジムを含んだ酸化物を含む。酸化物はペロブスカイト型結晶構造を有し、Aサイト元素の原子数の総和に対するネオジムの原子数の比率が、19.0原子%以上23.0原子%以下である。酸化物は、Bサイト元素の原子数の総和に対するマンガンの原子数の比率が、1.0原子%以上2.0原子%以下であるのが好ましい。又、Bサイト元素の原子数の総和に対するチタンの原子数の比率が、0原子%以上4.0原子%以下であるのが好ましい。焦電体は、−100℃以下の環境温度で用いられるものであるのが好ましい。【選択図】図2
PYROELECTRIC BODY, PYROELECTRIC ELEMENT, MANUFACTURING METHOD OF PYROELECTRIC ELEMENT, THERMOELECTRIC CONVERSION ELEMENT, MANUFACTURING METHOD OF THERMOELECTRIC CONVERSION ELEMENT, THERMAL TYPE PHOTODETECTOR, MANUFACTURING METHOD OF THERMAL TYPE PHOTODETECTOR, AND ELECTRONIC APPARATUS
PROBLEM TO BE SOLVED: To provide a pyroelectric body of which the pyroelectric coefficient (sensitivity) is high.SOLUTION: The pyroelectric body includes an oxide containing iron, manganese, bismuth and neodymium. The oxide has a perovskite crystal structure and a ratio of an atomic number of neodymium with respect to a total sum of atomic numbers of A-site elements is 19.0 atom% or more and 23.0 atom% or less. It is preferable for the oxide that a ratio of an atomic number of manganese with respect to a total sum of atomic numbers of B-site elements is 1.0 atom% or more and 2.0 atom% or less. Further, it is preferable that a ratio of an atomic number of titanium with respect to the total sum of the atomic numbers of the B-site elements is 0 atom% or more and 4.0 atom% or less. It is preferable that the pyroelectric body is used at an environmental temperature of -100°C or lower.SELECTED DRAWING: Figure 2
【課題】焦電係数(感度)の高い焦電体を提供する。【解決手段】焦電体は、鉄、マンガン、ビスマス及びネオジムを含んだ酸化物を含む。酸化物はペロブスカイト型結晶構造を有し、Aサイト元素の原子数の総和に対するネオジムの原子数の比率が、19.0原子%以上23.0原子%以下である。酸化物は、Bサイト元素の原子数の総和に対するマンガンの原子数の比率が、1.0原子%以上2.0原子%以下であるのが好ましい。又、Bサイト元素の原子数の総和に対するチタンの原子数の比率が、0原子%以上4.0原子%以下であるのが好ましい。焦電体は、−100℃以下の環境温度で用いられるものであるのが好ましい。【選択図】図2
PYROELECTRIC BODY, PYROELECTRIC ELEMENT, MANUFACTURING METHOD OF PYROELECTRIC ELEMENT, THERMOELECTRIC CONVERSION ELEMENT, MANUFACTURING METHOD OF THERMOELECTRIC CONVERSION ELEMENT, THERMAL TYPE PHOTODETECTOR, MANUFACTURING METHOD OF THERMAL TYPE PHOTODETECTOR, AND ELECTRONIC APPARATUS
焦電体、焦電素子、焦電素子の製造方法、熱電変換素子、熱電変換素子の製造方法、熱型光検出器、熱型光検出器の製造方法および電子機器
TSUCHIYA YASUSHI (Autor:in)
20.06.2016
Patent
Elektronische Ressource
Japanisch
IPC:
H01L
Halbleiterbauelemente
,
SEMICONDUCTOR DEVICES
/
C01G
Verbindungen der von den Unterklassen C01D oder C01F nicht umfassten Metalle
,
COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
/
C04B
Kalk
,
LIME
/
G01J
Messen der Intensität, der Geschwindigkeit, der spektralen Zusammensetzung, der Polarisation, der Phase oder der Pulscharakteristik von infrarotem, sichtbarem oder ultraviolettem Licht
,
MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT
Europäisches Patentamt | 2016
|Europäisches Patentamt | 2016
|Europäisches Patentamt | 2023
|Europäisches Patentamt | 2020
|Europäisches Patentamt | 2022
|