Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Solvent based environmental barrier coatings for high temperature ceramic components
Environmental barrier coatings for high temperature ceramic components including a bond coat layer; an optional silica layer; and at least one transition layer including: from about 85% to about 100% by volume of the transition layer of a primary transition material including a rare earth disilicate, or a doped rare earth disilicate; and from 0% to about 15% by volume of the transition layer of a secondary material selected from Fe2O3, iron silicates, rare earth iron oxides, Al2O3, mullite, rare earth aluminates, rare earth aluminosilicates, TiO2, rare earth titanates, Ga2O3, rare earth gallates, NiO, nickel silicates, rare earth nickel oxides, Lnb metals, Lnb2O3, Lnb2Si2O7, Lnb2SiO5, borosilicate glass, alkaline earth silicates, alkaline earth rare earth oxides, alkaline earth rare earth silicates, and mixtures thereof; where the transition layer is applied to the component as a slurry including at least an organic solvent, the primary transition material and at least one slurry sintering aid, and where a reaction between the slurry sintering aid and the primary transition material results in the transition layer having a porosity of from 0% to about 15% by volume of the transition layer.
Solvent based environmental barrier coatings for high temperature ceramic components
Environmental barrier coatings for high temperature ceramic components including a bond coat layer; an optional silica layer; and at least one transition layer including: from about 85% to about 100% by volume of the transition layer of a primary transition material including a rare earth disilicate, or a doped rare earth disilicate; and from 0% to about 15% by volume of the transition layer of a secondary material selected from Fe2O3, iron silicates, rare earth iron oxides, Al2O3, mullite, rare earth aluminates, rare earth aluminosilicates, TiO2, rare earth titanates, Ga2O3, rare earth gallates, NiO, nickel silicates, rare earth nickel oxides, Lnb metals, Lnb2O3, Lnb2Si2O7, Lnb2SiO5, borosilicate glass, alkaline earth silicates, alkaline earth rare earth oxides, alkaline earth rare earth silicates, and mixtures thereof; where the transition layer is applied to the component as a slurry including at least an organic solvent, the primary transition material and at least one slurry sintering aid, and where a reaction between the slurry sintering aid and the primary transition material results in the transition layer having a porosity of from 0% to about 15% by volume of the transition layer.
Solvent based environmental barrier coatings for high temperature ceramic components
KIRBY GLEN HAROLD (Autor:in) / BOUTWELL BRETT ALLEN (Autor:in)
09.10.2018
Patent
Elektronische Ressource
Englisch
IPC:
C09D
Überzugsmittel, z.B. Anstrichstoffe, Firnisse oder Lacke
,
COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS
/
C04B
Kalk
,
LIME
/
F01D
Strömungsmaschinen [Kraft- und Arbeitsmaschinen oder Kraftmaschinen], z.B. Dampfturbinen
,
NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
Solvent based environmental barrier coatings for high temperature ceramic components
Europäisches Patentamt | 2022
|Environmental barrier coatings for high temperature ceramic components
Europäisches Patentamt | 2021
|Environmental barrier coatings for high temperature ceramic components
Europäisches Patentamt | 2015
|Europäisches Patentamt | 2021
|HIGH TEMPERATURE TOLERANT CERAMIC MATRIX COMPOSITES AND ENVIRONMENTAL BARRIER COATINGS
Europäisches Patentamt | 2021
|