Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
ROOFTOP WIND TURBINE FLOW IMPROVEMENTS
One of the challenges of rooftop wind turbines is that the building causes turbulence and updrafts and can create a blockage to the wind at rooftop level. That means lower speed and higher turbulence wind hitting the turbine and less power output. Prior art solutions consisted of elevating the blades of rooftop turbines or making the updraft hit the blades. Creating structures that separate the turbulence of the air below roof level from the oncoming and higher velocity linear wind above roof level, where the turbine is located, can decrease slowing of the rooftop level wind stream and enable the blades to be placed closer to roof level, thereby saving construction costs and roof weight. It is ideal to combine these improvements with a vertical axis wind turbine.
ROOFTOP WIND TURBINE FLOW IMPROVEMENTS
One of the challenges of rooftop wind turbines is that the building causes turbulence and updrafts and can create a blockage to the wind at rooftop level. That means lower speed and higher turbulence wind hitting the turbine and less power output. Prior art solutions consisted of elevating the blades of rooftop turbines or making the updraft hit the blades. Creating structures that separate the turbulence of the air below roof level from the oncoming and higher velocity linear wind above roof level, where the turbine is located, can decrease slowing of the rooftop level wind stream and enable the blades to be placed closer to roof level, thereby saving construction costs and roof weight. It is ideal to combine these improvements with a vertical axis wind turbine.
ROOFTOP WIND TURBINE FLOW IMPROVEMENTS
FARB MARK DANIEL (Autor:in)
20.06.2019
Patent
Elektronische Ressource
Englisch
Horizontally-laid tangential rooftop wind power generator
Europäisches Patentamt | 2015
|