Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
This invention belongs to the field of ocean engineering technology. The present invention relates to a free fall ball penetrometer with a booster, which is a kind of free-fall penetrometer. The free fall penetrometer with a booster is dynamically penetrated into the seabed through its kinetic and potential energies without any loading devices, hence the operation process is simple. The main measuring instrument is the ball penetrometer at the tip of the free fall ball penetrometer with a booster. The ball penetrometer is subject to end bearing resistance, drag force, and buoyancy of the soil during the dynamic penetration process within the soil. Based on the measured data from the accelerometer and load cell, the soil strength parameters including the soil undrained shear strength and strain-rate parameter can be back-analyzed. The added booster can effectively increase the penetration depth of the ball penetrometer and hence enlarge the range of measured penetration depths. Moreover, the booster can improve the directional stability of the penetrometer during the falling process, avoiding the ball from rotating. A load cell is added in the present penetrometer. The force data measured from the load cell, together with the acceleration data from the accelerometer, can further improve the measured accuracy.
This invention belongs to the field of ocean engineering technology. The present invention relates to a free fall ball penetrometer with a booster, which is a kind of free-fall penetrometer. The free fall penetrometer with a booster is dynamically penetrated into the seabed through its kinetic and potential energies without any loading devices, hence the operation process is simple. The main measuring instrument is the ball penetrometer at the tip of the free fall ball penetrometer with a booster. The ball penetrometer is subject to end bearing resistance, drag force, and buoyancy of the soil during the dynamic penetration process within the soil. Based on the measured data from the accelerometer and load cell, the soil strength parameters including the soil undrained shear strength and strain-rate parameter can be back-analyzed. The added booster can effectively increase the penetration depth of the ball penetrometer and hence enlarge the range of measured penetration depths. Moreover, the booster can improve the directional stability of the penetrometer during the falling process, avoiding the ball from rotating. A load cell is added in the present penetrometer. The force data measured from the load cell, together with the acceleration data from the accelerometer, can further improve the measured accuracy.
FREE FALL BALL PENETROMETER WITH A BOOSTER
LIU JUN (Autor:in)
14.11.2019
Patent
Elektronische Ressource
Englisch
CFD Analysis of Free-Fall Ball Penetrometer in Clay
Springer Verlag | 2018
|Free fall penetrometer: a performance evaluation
Elsevier | 1979
|In situ undrained shear strength characterization using data from free fall ball penetrometer tests
British Library Online Contents | 2018
|DESIGN OF A MODULAR, MARINE FREE-FALL CONE PENETROMETER
British Library Online Contents | 2006
|