Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Field tests were performed to study the horizontal load-displacement characteristics of natural soil deposits and to associate these characteristics with the behavior of laterally loaded piles. The ultimate objective of the tests was to acquire information essential for the design of laterally loaded soil-supported structures. Three soil conditions were considered: (1) bay mud with a desiccated crust in its natural dry state, (2) bay mud submerged within the area of testing, and (3) a hydraulic fill of granular material classified as SP by the unified soil classification system. Segmental pile tests were performed with three sizes of laterally loaded segments and at various depths below ground surface in the bay mud. (Similar tests in the hydraulic fill were covered in a previous NCEL report.) Lateral load tests on full-scale piles from 4 to 16 inches in diameter were performed at each test site. Theoretical information, available soil data, and results of the segmental pile tests were compared and combined to establish representative lateral load-displacement relationships for the soil at any depth at the three sites by using rectangular hyperbolas. Theoretical predictions of the response of laterally loaded piles were made using these relationships, and the results were compared with data obtained during the lateral load tests on piles. Experimental data and theoretical predictions compared favorably. (Author)
Field tests were performed to study the horizontal load-displacement characteristics of natural soil deposits and to associate these characteristics with the behavior of laterally loaded piles. The ultimate objective of the tests was to acquire information essential for the design of laterally loaded soil-supported structures. Three soil conditions were considered: (1) bay mud with a desiccated crust in its natural dry state, (2) bay mud submerged within the area of testing, and (3) a hydraulic fill of granular material classified as SP by the unified soil classification system. Segmental pile tests were performed with three sizes of laterally loaded segments and at various depths below ground surface in the bay mud. (Similar tests in the hydraulic fill were covered in a previous NCEL report.) Lateral load tests on full-scale piles from 4 to 16 inches in diameter were performed at each test site. Theoretical information, available soil data, and results of the segmental pile tests were compared and combined to establish representative lateral load-displacement relationships for the soil at any depth at the three sites by using rectangular hyperbolas. Theoretical predictions of the response of laterally loaded piles were made using these relationships, and the results were compared with data obtained during the lateral load tests on piles. Experimental data and theoretical predictions compared favorably. (Author)
Soil Behavior around Laterally Loaded Piles
H. L. Gill (Autor:in)
1968
63 pages
Report
Keine Angabe
Englisch
Experimental evaluation of soil deformation patterns around laterally loaded piles
British Library Conference Proceedings | 2008
|Soil Modulus for Laterally Loaded Piles
ASCE | 2021
|Soil modulus for laterally loaded piles
Engineering Index Backfile | 1956
|Laterally loaded rigid piles in cohesionless soil
British Library Online Contents | 2008
|Laterally loaded piles in layered soil system
Engineering Index Backfile | 1963
|