Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China
Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients(σsc), absorption coefficients(σab),Angstr?m exponent(α), single scattering albedo(ω), backscattering ratio(βsc), aerosol mass scattering proficiency(Q sc) and aerosol surface scattering proficiency(Q sc′) were obtained. The mean statistical values of σsc were 77.45 Mm-1(at 450 nm), 50.72 Mm-1(at 550 nm), and32.02 Mm-1(at 700 nm). The mean value of σab was 7.62 Mm-1(at 550 nm). The mean values ofα, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters(ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Q sc and Q sc′ showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Q sc, Q sc′, σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.
Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China
Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients(σsc), absorption coefficients(σab),Angstr?m exponent(α), single scattering albedo(ω), backscattering ratio(βsc), aerosol mass scattering proficiency(Q sc) and aerosol surface scattering proficiency(Q sc′) were obtained. The mean statistical values of σsc were 77.45 Mm-1(at 450 nm), 50.72 Mm-1(at 550 nm), and32.02 Mm-1(at 700 nm). The mean value of σab was 7.62 Mm-1(at 550 nm). The mean values ofα, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters(ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Q sc and Q sc′ showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Q sc, Q sc′, σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.
Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China
2015
Aufsatz (Zeitschrift)
Englisch
Collapsible Loess on the Loess Plateau of China
British Library Conference Proceedings | 1995
|Springer Verlag | 2017
|