Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Structure and System Nonprobabilistic Reliability Solution Method Based on Enhanced Optimal Latin Hypercube Sampling
Using the convex model approach, the bounds of uncertain variables are only required rather than the precise probability distributions, based on which it can be made possible to conduct the reliability analysis for many complex engineering problems with limited information. This paper aims to develop a novel nonprobabilistic reliability solution method for structures with interval uncertainty variables. In order to explore the entire domain represented by interval variables, an enhanced optimal Latin hypercube sampling (EOLHS) is used to reduce the computational effort considerably. Through the proposed method, the safety degree of a structure with convex modal uncertainty can be quantitatively evaluated. More importantly, this method can be used to deal with any general problems with nonlinear and black-box performance functions. By introducing the suggested reliability method, a convex-model-based system reliability method is also formulated. Three numerical examples are investigated to demonstrate the efficiency and accuracy of the method.
Structure and System Nonprobabilistic Reliability Solution Method Based on Enhanced Optimal Latin Hypercube Sampling
Using the convex model approach, the bounds of uncertain variables are only required rather than the precise probability distributions, based on which it can be made possible to conduct the reliability analysis for many complex engineering problems with limited information. This paper aims to develop a novel nonprobabilistic reliability solution method for structures with interval uncertainty variables. In order to explore the entire domain represented by interval variables, an enhanced optimal Latin hypercube sampling (EOLHS) is used to reduce the computational effort considerably. Through the proposed method, the safety degree of a structure with convex modal uncertainty can be quantitatively evaluated. More importantly, this method can be used to deal with any general problems with nonlinear and black-box performance functions. By introducing the suggested reliability method, a convex-model-based system reliability method is also formulated. Three numerical examples are investigated to demonstrate the efficiency and accuracy of the method.
Structure and System Nonprobabilistic Reliability Solution Method Based on Enhanced Optimal Latin Hypercube Sampling
He, Xin-Dang (Autor:in) / Gou, Wen-Xuan / Liu, Yong-Shou / Gao, Zong-Zhan
2015
Aufsatz (Zeitschrift)
Englisch
DOAJ | 2019
|On Latin hypercube sampling for structural reliability analysis
British Library Online Contents | 2003
|On Latin hypercube sampling for structural reliability analysis
Elsevier | 2002
|On Latin hypercube sampling for structural reliability analysis
Online Contents | 2003
|