Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Novel Feature Selection Approach Based on FODPSO and SVM
A novel feature selection approach is proposed to address the curse of dimensionality and reduce the redundancy of hyperspectral data. The proposed approach is based on a new binary optimization method inspired by fractional-order Darwinian particle swarm optimization (FODPSO). The overall accuracy (OA) of a support vector machine (SVM) classifier on validation samples is used as fitness values in order to evaluate the informativity of different groups of bands. In order to show the capability of the proposed method, two different applications are considered. In the first application, the proposed feature selection approach is directly carried out on the input hyperspectral data. The most informative bands selected from this step are classified by the SVM. In the second application, the main shortcoming of using attribute profiles (APs) for spectral-spatial classification is addressed. In this case, a stacked vector of the input data and an AP with all widely used attributes are created. Then, the proposed feature selection approach automatically chooses the most informative features from the stacked vector. Experimental results successfully confirm that the proposed feature selection technique works better in terms of classification accuracies and CPU processing time than other studied methods without requiring the number of desired features to be set a priori by users.
A Novel Feature Selection Approach Based on FODPSO and SVM
A novel feature selection approach is proposed to address the curse of dimensionality and reduce the redundancy of hyperspectral data. The proposed approach is based on a new binary optimization method inspired by fractional-order Darwinian particle swarm optimization (FODPSO). The overall accuracy (OA) of a support vector machine (SVM) classifier on validation samples is used as fitness values in order to evaluate the informativity of different groups of bands. In order to show the capability of the proposed method, two different applications are considered. In the first application, the proposed feature selection approach is directly carried out on the input hyperspectral data. The most informative bands selected from this step are classified by the SVM. In the second application, the main shortcoming of using attribute profiles (APs) for spectral-spatial classification is addressed. In this case, a stacked vector of the input data and an AP with all widely used attributes are created. Then, the proposed feature selection approach automatically chooses the most informative features from the stacked vector. Experimental results successfully confirm that the proposed feature selection technique works better in terms of classification accuracies and CPU processing time than other studied methods without requiring the number of desired features to be set a priori by users.
A Novel Feature Selection Approach Based on FODPSO and SVM
Ghamisi, Pedram (Autor:in) / Couceiro, Micael S / Benediktsson, Jon Atli
2015
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
An Incremental Approach to Contribution-Based Feature Selection
British Library Online Contents | 2004
|A novel random forests-based feature selection method for microarray expression data analysis
British Library Online Contents | 2015
|Margin-based feature selection for hyperspectral data
Online Contents | 2009
|Margin-based feature selection for hyperspectral data
Online Contents | 2009
|