Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Kinetics and equilibrium studies on Mg-Al oxide for removal of fluoride in aqueous solution and its use in recycling
Mg-Al oxide obtained by the thermal decomposition of Mg-Al layered double hydroxide (LDH) intercalated with CO3(2-) (CO3·Mg-Al LDH) was found to take up fluoride from aqueous solution. Fluoride was removed by rehydration of Mg-Al oxide accompanied by combination with F(-). Using five times the stoichiometric quantity of Mg-Al oxide, the residual concentration of F was decreased from 100 to 6.3 mg/L in 480 min, which was below the effluent standard in Japan (8 mg/L). Removal of F(-) can be represented by pseudo-second-order reaction kinetics. The apparent rate constants at 10 °C, 30 °C, and 60 °C were 2.3 × 10(-3), 2.2 × 10(-2), and 2.5 × 10(-1) g mmol(-1) min(-1), respectively. The apparent activation energy was 73.3 kJ mol(-1). The rate-determining step for F removal by Mg-Al oxide was consistent with chemical adsorption involving intercalation of F(-) into the reconstructed Mg-Al LDH due to electrostatic attraction. The adsorption of F by Mg-Al oxide follows a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.0 mmol g(-1) and 1.1 × 10(3), respectively, for Mg-Al oxide. The F(-) in the F·Mg-Al LDH thus produced was found to be anion-exchanged with CO3(2-) in solution. The Mg-Al oxide after regeneration treatment had excellent properties for removal of F in aqueous solution. In conclusion, the results of this study indicated that Mg-Al oxide has potential for use in recycling to remove F in aqueous solution.
Kinetics and equilibrium studies on Mg-Al oxide for removal of fluoride in aqueous solution and its use in recycling
Mg-Al oxide obtained by the thermal decomposition of Mg-Al layered double hydroxide (LDH) intercalated with CO3(2-) (CO3·Mg-Al LDH) was found to take up fluoride from aqueous solution. Fluoride was removed by rehydration of Mg-Al oxide accompanied by combination with F(-). Using five times the stoichiometric quantity of Mg-Al oxide, the residual concentration of F was decreased from 100 to 6.3 mg/L in 480 min, which was below the effluent standard in Japan (8 mg/L). Removal of F(-) can be represented by pseudo-second-order reaction kinetics. The apparent rate constants at 10 °C, 30 °C, and 60 °C were 2.3 × 10(-3), 2.2 × 10(-2), and 2.5 × 10(-1) g mmol(-1) min(-1), respectively. The apparent activation energy was 73.3 kJ mol(-1). The rate-determining step for F removal by Mg-Al oxide was consistent with chemical adsorption involving intercalation of F(-) into the reconstructed Mg-Al LDH due to electrostatic attraction. The adsorption of F by Mg-Al oxide follows a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.0 mmol g(-1) and 1.1 × 10(3), respectively, for Mg-Al oxide. The F(-) in the F·Mg-Al LDH thus produced was found to be anion-exchanged with CO3(2-) in solution. The Mg-Al oxide after regeneration treatment had excellent properties for removal of F in aqueous solution. In conclusion, the results of this study indicated that Mg-Al oxide has potential for use in recycling to remove F in aqueous solution.
Kinetics and equilibrium studies on Mg-Al oxide for removal of fluoride in aqueous solution and its use in recycling
Kameda, Tomohito (Autor:in) / Oba, Jumpei / Yoshioka, Toshiaki
2015
Aufsatz (Zeitschrift)
Englisch
BKL:
43.00
British Library Online Contents | 2013
|Fluoride removal from aqueous solution by Al(III)–Zr(IV) binary oxide adsorbent
British Library Online Contents | 2015
|