Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Ductility damage indices based on seismic performance of RC frames
This paper presents an analytical procedure for determining ductility damage indices using static collapse mechanism analysis for ductile reinforced concrete (RC) frames subjected to prescribed drift limits corresponding to different seismic performance levels. This assessment benefits from performance-based seismic design (PBSD) concept that employs rotation ductility factors, pre-defined target damage indices and beam sidesway mechanism as key performance objectives to estimate curvature ductility demands at pre-designated plastic hinges of beam sidesway mechanism. The proposed ductility-based damage indices (DBDI) assessment procedure considers regular frames with secondary effects such as P-Delta and soil-structure interaction (SSI) within a simple non-iterative process suitable for practical applications. A 12-story RC moment frame was chosen to implement the proposed procedure considering P-Delta effect. Pushover analysis using SAP 2000 was carried out for the frame to verify the results of the DBDI method. The results show that the DBDI seismic assessment procedure can be used to quantify the damage potential at different performance levels and relate that to local flexural ductility of critical frame members. The research presented in this paper provides a simple yet conservative damage assessment tool for use by practicing engineers.
Ductility damage indices based on seismic performance of RC frames
This paper presents an analytical procedure for determining ductility damage indices using static collapse mechanism analysis for ductile reinforced concrete (RC) frames subjected to prescribed drift limits corresponding to different seismic performance levels. This assessment benefits from performance-based seismic design (PBSD) concept that employs rotation ductility factors, pre-defined target damage indices and beam sidesway mechanism as key performance objectives to estimate curvature ductility demands at pre-designated plastic hinges of beam sidesway mechanism. The proposed ductility-based damage indices (DBDI) assessment procedure considers regular frames with secondary effects such as P-Delta and soil-structure interaction (SSI) within a simple non-iterative process suitable for practical applications. A 12-story RC moment frame was chosen to implement the proposed procedure considering P-Delta effect. Pushover analysis using SAP 2000 was carried out for the frame to verify the results of the DBDI method. The results show that the DBDI seismic assessment procedure can be used to quantify the damage potential at different performance levels and relate that to local flexural ductility of critical frame members. The research presented in this paper provides a simple yet conservative damage assessment tool for use by practicing engineers.
Ductility damage indices based on seismic performance of RC frames
Alhaddad, Mohammad S (Autor:in) / Wazira, Khalid M / Al-Salloum, Yousef A / Abbas, Husain
2015
Aufsatz (Zeitschrift)
Englisch
Seismic Damage Indices and Near-Collapse Performance Assessment in Composite Moment Frames
British Library Conference Proceedings | 2000
|Ductility of Concrete Frames Under Seismic Loading
UB Braunschweig | 1975
|Ductility of prestressed concrete frames under seismic loading
TIBKAT | 1971
|Ductility of reinforced concrete frames, under seismic loading
Engineering Index Backfile | 1968
|