Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Magnetic Induction-Based Positioning in Distorted Environments
Ferrous and highly conductive materials distort low-frequency magnetic fields and can significantly increase magnetoinductive positioning errors. In this paper, we use the image theory in order to formulate an analytical channel model for the magnetic field of a quasi-static magnetic dipole positioned above a perfectly conducting half-space. The proposed model can be used to compensate for the distorting effects that metallic reinforcement bars (rebars) within the floor impose on the magnetic field of a magnetoinductive transmitter node in an indoor single-story environment. Good agreement is observed between the analytical solution and numerical solutions obtained from 3-D finite-element simulations. Experimental results indicate that the image theory model shows improvement over the free-space dipole model in estimating positions in the distorted environment, typically reducing positioning errors by 22% in 90% of the cases and 26% in 40% of the cases. No prior information on the geometry of the metallic distorters was available, making this essentially a "blind" technique.
Magnetic Induction-Based Positioning in Distorted Environments
Ferrous and highly conductive materials distort low-frequency magnetic fields and can significantly increase magnetoinductive positioning errors. In this paper, we use the image theory in order to formulate an analytical channel model for the magnetic field of a quasi-static magnetic dipole positioned above a perfectly conducting half-space. The proposed model can be used to compensate for the distorting effects that metallic reinforcement bars (rebars) within the floor impose on the magnetic field of a magnetoinductive transmitter node in an indoor single-story environment. Good agreement is observed between the analytical solution and numerical solutions obtained from 3-D finite-element simulations. Experimental results indicate that the image theory model shows improvement over the free-space dipole model in estimating positions in the distorted environment, typically reducing positioning errors by 22% in 90% of the cases and 26% in 40% of the cases. No prior information on the geometry of the metallic distorters was available, making this essentially a "blind" technique.
Magnetic Induction-Based Positioning in Distorted Environments
Orfeas Kypris (Autor:in) / Traian E Abrudan / Andrew Markham
2016
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Engineering Index Backfile | 1943
|Inversion of Induction Tool Measurements Using the Distorted Born Iterative Method and CG-FFHT
Online Contents | 1994
|Intelligent induction flag raising positioning device
Europäisches Patentamt | 2021
|Shape estimation of distorted flexible structures
Tema Archiv | 1996
|