Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic
A novel bioflocculant (MBF-79) prepared using formaldehyde wastewater as carbon resource was investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 7.0%, initial pH of 6.0, and formaldehyde concentration of 350 mg/L. An MBF-79 of 8.97 g/L was achieved as the maximum yield. Three main elements, namely C, H, and O, were present in MBF-79 with relative weigh percentages of 39.17%, 6.74%, and 34.55%, respectively. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-79 was 230 kDa. MBF-79 primarily comprised polysaccharide (71.2%) and protein (27.9%). Additionally, conditions for the removal of arsenic by MBF-79 were found to be MBF-79 at 120 mg/L, an initial pH 7.0, and a contact time 60 min. Under the optimal conditions, the removal efficiencies of arsenate (0.5 mg/L) and arsenite (0.5 mg/L) were 98.9% and 84.6%, respectively. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenic during water treatment.
Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic
A novel bioflocculant (MBF-79) prepared using formaldehyde wastewater as carbon resource was investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 7.0%, initial pH of 6.0, and formaldehyde concentration of 350 mg/L. An MBF-79 of 8.97 g/L was achieved as the maximum yield. Three main elements, namely C, H, and O, were present in MBF-79 with relative weigh percentages of 39.17%, 6.74%, and 34.55%, respectively. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-79 was 230 kDa. MBF-79 primarily comprised polysaccharide (71.2%) and protein (27.9%). Additionally, conditions for the removal of arsenic by MBF-79 were found to be MBF-79 at 120 mg/L, an initial pH 7.0, and a contact time 60 min. Under the optimal conditions, the removal efficiencies of arsenate (0.5 mg/L) and arsenite (0.5 mg/L) were 98.9% and 84.6%, respectively. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenic during water treatment.
Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic
Zhao, Haijuan (Autor:in) / Zhong, Chunying / Chen, Honggao / Yao, Jie / Tan, Liqing / Zhang, Youlang / Zhou, Jiangang
2016
Aufsatz (Zeitschrift)
Englisch
BKL:
43.00
Removal of Formaldehyde from Acrylic Acid Production Wastewater
British Library Online Contents | 2003
|American Chemical Society | 2025
|