Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Vector Attribute Profiles for Hyperspectral Image Classification
Morphological attribute profiles are among the most prominent spectral-spatial pixel description methods. They are efficient, effective, and highly customizable multiscale tools based on hierarchical representations of a scalar input image. Their application to multivariate images in general and hyperspectral images in particular has been so far conducted using the marginal strategy , i.e., by processing each image band (eventually obtained through a dimension reduction technique) independently. In this paper, we investigate the alternative vector strategy , which consists in processing the available image bands simultaneously. The vector strategy is based on a vector-ordering relation that leads to the computation of a single max and min tree per hyperspectral data set, from which attribute profiles can then be computed as usual. We explore known vector-ordering relations for constructing such max trees and, subsequently, vector attribute profiles and introduce a combination of marginal and vector strategies. We provide an experimental comparison of these approaches in the context of hyperspectral classification with common data sets, where the proposed approach outperforms the widely used marginal strategy.
Vector Attribute Profiles for Hyperspectral Image Classification
Morphological attribute profiles are among the most prominent spectral-spatial pixel description methods. They are efficient, effective, and highly customizable multiscale tools based on hierarchical representations of a scalar input image. Their application to multivariate images in general and hyperspectral images in particular has been so far conducted using the marginal strategy , i.e., by processing each image band (eventually obtained through a dimension reduction technique) independently. In this paper, we investigate the alternative vector strategy , which consists in processing the available image bands simultaneously. The vector strategy is based on a vector-ordering relation that leads to the computation of a single max and min tree per hyperspectral data set, from which attribute profiles can then be computed as usual. We explore known vector-ordering relations for constructing such max trees and, subsequently, vector attribute profiles and introduce a combination of marginal and vector strategies. We provide an experimental comparison of these approaches in the context of hyperspectral classification with common data sets, where the proposed approach outperforms the widely used marginal strategy.
Vector Attribute Profiles for Hyperspectral Image Classification
Aptoula, Erchan (Autor:in) / Dalla Mura, Mauro / Lefevre, Sebastien
2016
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Vector Attribute Profiles for Hyperspectral Image Classification
Online Contents | 2016
|