Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Bridge Column Maximum Drift Estimation via Computer Vision
AbstractThis paper considers the viability of applying computer vision techniques for estimating the peak experienced seismic displacement of damaged bridge columns, for use in postdisaster triage assessment. The primary objective of the associated study was to determine if there is a statistically robust relationship between peak seismic displacement and damage observations extracted from two-dimensional (2D) images captured after an event. To this end, correlations were developed using images and experimental test data from lateral-load tests performed on a series of reinforced concrete bridge columns. Computer vision algorithms based on a combination of image segmentation, feature extraction, and nonlinear regression analysis were used to estimate peak drift. The results presented in this paper indicate strong correlations between parameterized crack patterns and experienced structural displacement, regardless of the position of the camera. Key findings include the necessity of using nonlinear machine learning–based regression analyses, as well as the need to model spall damage at high drift levels. It was also found that large variations in camera lighting or column design can inhibit estimation accuracy.
Bridge Column Maximum Drift Estimation via Computer Vision
AbstractThis paper considers the viability of applying computer vision techniques for estimating the peak experienced seismic displacement of damaged bridge columns, for use in postdisaster triage assessment. The primary objective of the associated study was to determine if there is a statistically robust relationship between peak seismic displacement and damage observations extracted from two-dimensional (2D) images captured after an event. To this end, correlations were developed using images and experimental test data from lateral-load tests performed on a series of reinforced concrete bridge columns. Computer vision algorithms based on a combination of image segmentation, feature extraction, and nonlinear regression analysis were used to estimate peak drift. The results presented in this paper indicate strong correlations between parameterized crack patterns and experienced structural displacement, regardless of the position of the camera. Key findings include the necessity of using nonlinear machine learning–based regression analyses, as well as the need to model spall damage at high drift levels. It was also found that large variations in camera lighting or column design can inhibit estimation accuracy.
Bridge Column Maximum Drift Estimation via Computer Vision
Miller, Gregory R (Autor:in) / Eberhard, Marc O / Haraldsson, Olafur S / Lattanzi, David
2016
Aufsatz (Zeitschrift)
Englisch
BKL:
56.03
/
56.03
Methoden im Bauingenieurwesen
Lokalklassifikation TIB:
770/3130/6500
Bridge column maximum drift estimation via computer vision
Online Contents | 2016
|Bridge Column Maximum Drift Estimation via Computer Vision
British Library Online Contents | 2016
|Estimation of maximum interstory drift demands in displacement-based design
British Library Conference Proceedings | 1997
|Computer Vision for Bridge Inspection and Monitoring
Springer Verlag | 2024
|